BACKGROUND: Viral load testing for cytomegalovirus (CMV) is an important diagnostic tool for the management of transplant recipients and immunocompromised individuals; however, inconsistency among laboratories in quantitative measurements of viral load limits interinstitutional comparisons. These inconsistencies stem from the lack of assays cleared by the US Food and Drug Administration, the absence of international standards, the wide variety of CMV-extraction and -detection methods, and differences in materials used for calibration. A critical component of standardization is the use of calibrators that are traceable and commutable.
Commutability of quantitative reference materials has proven important for reliable and accurate results in clinical chemistry. As international reference standards and commercially produced calibration material have become available to address the variability of viral load assays, the degree to which such materials are commutable and the effect of commutability on assay concordance have been questioned. To investigate this, 60 archived clinical plasma samples, which previously tested positive for cytomegalovirus (CMV), were retested by five different laboratories, each using a different quantitative CMV PCR assay. Results from each laboratory were calibrated both with lab-specific quantitative CMV standards ("lab standards") and with common, commercially available standards (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.