A search for a long-lived scalar particle χ is performed, looking for the decay B þ → K þ χ with χ → μ þ μ − in pp collision data corresponding to an integrated luminosity of 3 fb −1 , collected by the LHCb experiment at center-of-mass energies of ffiffi ffi s p ¼ 7 and 8 TeV. This new scalar particle, predicted by hidden sector models, is assumed to have a narrow width. The signal would manifest itself as an excess in the dimuon invariant mass distribution over the Standard Model background. No significant excess is observed in the accessible ranges of mass 250 < mðχÞ < 4700 MeV=c 2 and lifetime 0.1 < τðχÞ < 1000 ps. Upper limits on the branching fraction BðB þ → K þ χðμ þ μ − ÞÞ at 95% confidence level are set as a function of mðχÞ and τðχÞ, varying between 2 × 10 −10 and 10 −7. These are the most stringent limits to date. The limits are interpreted in the context of a model with a light inflaton particle.
A new type of ring-imaging Cherenkov detector is being used for hadronic particle identification in the BABAR experiment at the SLAC B Factory (PEP-II). This detector is called DIRC, an acronym for Detection of Internally Reflected Cherenkov (Light). This paper will discuss the construction, operation and performance of the BABAR DIRC in detail. r
From a sample of 1172 +/- 61 D(+)-->pi(-)pi(+)pi(+) decays, we find gamma(D(+)-->pi(-)pi(+)pi(+))/gamma(D(+)-->K-pi(+)pi(+)) = 0.0311 +/- 0.0018(+0.0016)(-0.0026). Using a coherent amplitude analysis to fit the Dalitz plot of these decays, we find strong evidence that a scalar resonance of mass 478(+24)(-23) +/- 17 MeV/c(2) and width 324(+42)(-40) +/- 21 MeV/c(2) accounts for approximately half of all decays.
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.