The advent of gallium 68 prostate specific membrane antigen (PSMA) PET imaging has revolutionized the diagnosis and treatment of prostate cancer. PSMA is a transmembrane glycoprotein that is overexpressed in prostate cancer and yields images with high tumor-to-background contrast. Effective “one-stop-shop” imaging of the prostate, lymph nodes, soft tissue, and bone is achieved with PSMA PET. Compared to conventional imaging, PSMA PET provides superior sensitivity and specificity and plays a pivotal role in staging high-risk prostate cancer as well as in biochemical recurrence by identifying oligometastatic disease. PSMA PET furthermore assists in the selection of patients with metastatic castrate resistant prostate cancer for possible treatment (e.g., labeled with a beta emitter lutetium 177) by using a theranostic approach. The term “prostate specific” is a misnomer as PSMA is also present in other malignant and benign conditions since it acts as a folate hydrolase. To avoid pitfalls and false-positives, a sound knowledge of the normal biodistribution of PSMA as well as other potential causes for false-positive uptake is imperative. This review will describe the expected patterns of distribution of Ga 68 PSMA PET imaging and the common pitfalls noted in published literature since the topic is still evolving.
Indium 111 DTPA Octreotide (Octreoscan) has been the pillar of Somatostatin receptor (SSTRs) imaging in nuclear medicine for over three decades. The advent of PET/CT brought new analogs of somatostatin that have higher affinity and improved resolution due to their labeling to Gallium 68 for positron imaging. The most used analogs include DOTATATE, DOTATOC and DOTANOC. However, Gallium 68–1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-octreotate (DOTATATE) is probably the most common non-FDG (fluoro-2-deoxy glucose) PET tracer alongside PSMA (prostate specific membrane antigen). In contrast to F18-labeled FDG, it does not require proximity to a cyclotron due to the availability of the Ga68 generator. DOTATATE is a somatostatin analog which allows whole body imaging of somatostatin receptors on cell surfaces. 68Ga-DOTA compounds provide the imaging standard for well-differentiated (Grade 1 and low grade 2) neuro-endocrine tumors (NETs) and is utilized in the staging and characterization and restaging of patients with NETs. 68Ga DOTATATE has a complementary role with 18F-FDG where tumors may exhibit varying degrees of differentiation. It furthermore has application as a prelude to therapy in selecting patients for peptide receptor radionuclide therapy using a theranostic approach. A sound knowledge of the normal biodistribution of the radiotracer is imperative for optimal patient outcome and to avoid potential false positives such as inflammation, normal pancreatic uncinate process uptake and osteoblastic activity. In this review, we will describe the normal appearances of the 68Ga DOTATATE and the potential pitfalls with the support of images to aid in improving interpretation of this crucial innovative tool in the management of individuals with tumors expressing SSTRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.