The sequence of glucagon-like peptide-1 (7-36) amide (GLP-1) is completely conserved in all mammalian species studied, implying that it plays a critical physiological role. We have shown that GLP-1 and its specific receptors are present in the hypothalamus. No physiological role for central GLP-1 has been established. We report here that intracerebroventricular (ICV) GLP-1 powerfully inhibits feeding in fasted rats. ICV injection of the specific GLP-1-receptor antagonist, exendin (9-39), blocked the inhibitory effect of GLP-1 on food intake. Exendin (9-39) alone had no influence on fast-induced feeding but more than doubled food intake in satiated rats, and augmented the feeding response to the appetite stimulant, neuropeptide Y. Induction of c-fos is a marker of neuronal activation. Following ICV GLP-1 injection, c-fos appeared exclusively in the paraventricular nucleus of the hypothalamus and central nucleus of the amygdala, and this was inhibited by prior administration of exendin (9-39). Both of these regions of the brain are of primary importance in the regulation of feeding. These findings suggest that central GLP-1 is a new physiological mediator of satiety.
The adipose tissue hormone, leptin, and the neuropeptide glucagon-like peptide-1 (7-36) amide (GLP-1) both reduce food intake and body weight in rodents. Using dual in situ hybridization, long isoform leptin receptor (OB-Rb) was localized to GLP-1 neurons originating in the nucleus of the solitary tract. ICV injection of the specific GLP-1 receptor antagonist, exendin(9-39), at the onset of dark phase, did not affect feeding in saline pre-treated controls, but blocked the reduction in food intake and body weight of leptin pro-treated rats. These findings suggest that GLP-1 neurons are a potential target for leptin in its control of feeding.
There are now six recognized neuropeptide Y (NPY) receptor subtypes (Y1-Y4 and two recently cloned distinct receptors labeled Y5), of which Y1 and one of the Y5's have been suggested could mediate the effect of NPY on feeding. The fragments NPY(2-36) and NPY(3-36), which bind Y1 only poorly, were injected intracerebroventricularly (icv) and found to have similar dose-response relationships to NPY in the stimulation of feeding. However NPY (13-36), which stimulates both Y2 and Y5, caused no increase in food intake, even at high doses. Maximal stimulation with the classical Y1 agonist [Pro34]-NPY produced only 50% of the maximum effect of NPY itself despite fully inhibiting adenylyl cyclase activity in vitro in a Y1 system. The novel fragment [Pro34]-NPY(3-36) is as effective at stimulating food intake as the classical Y1 analogue [Pro34]-NPY but bound to the Y1 receptor with only 1/20th of the affinity of NPY and failed to inhibit adenylyl cyclase through this receptor. [Pro34]-NPY(3-36) is therefore a relatively appetite-selective ligand. Coadministration of high dose NPY(13-36) and [Pro34]NPY did not enhance feeding compared with [Pro34]-NPY alone. In addition, the NPY Y1 receptor antagonist BIBP-3226, which does not bind Y2, Y4, or Y5 receptors, significantly reduced NPY induced feeding. These results indicate that the feeding effect of icv NPY involves a novel receptor and that it is functionally distinct from the recognized receptor subtypes.
Central nervous system glucagon-like peptide-1-(7-36) amide (GLP-1) administration has been reported to acutely reduce food intake in the rat. We here report that repeated intracerebroventricular (i.c.v.) injection of GLP-1 or the GLP-1 receptor antagonist, exendin-(9-39), affects food intake and body weight. Daily i.c.v. injection of 3 nmol GLP-1 to schedule-fed rats for 6 days caused a reduction in food intake and a decrease in body weight of 16 +/- 5 g (P < 0.02 compared with saline-injected controls). Daily i.c.v. administration of 30 nmol exendin-(9-39) to schedule-fed rats for 3 days caused an increase in food intake and increased body weight by 7 +/- 2 g (P < 0.02 compared with saline-injected controls). Twice daily i.c.v. injections of 30 nmol exendin-(9-39) with 2.4 nmol neuropeptide Y to ad libitum-fed rats for 8 days increased food intake and increased body weight by 28 +/- 4 g compared with 14 +/- 3 g in neuropeptide Y-injected controls (P < 0.02). There was no evidence of tachyphylaxis in response to i.c.v. GLP-1 or exendin-(9-39). GLP-1 may thus be involved in the regulation of body weight in the rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.