Context. The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKING will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, its core science driver is mapping the large-scale matter distribution in the Universe back to a redshift of ∼0.5. Secondary science cases include galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars. Aims. KiDS is an ESO Public Survey and dedicated to serving the astronomical community with high-quality data products derived from the survey data. Public data releases, the first two of which are presented here, are crucial for enabling independent confirmation of the survey's scientific value. The achieved data quality and initial scientific utilization are reviewed in order to validate the survey data. Methods. A dedicated pipeline and data management system based on A-WISE, combined with newly developed masking and source classification tools, is used for the production of the data products described here. Science projects based on these data products and preliminary results are outlined. Results. For 148 survey tiles (≈160 sq.deg.) stacked ugri images have been released, accompanied by weight maps, masks, source lists, and a multi-band source catalogue. Limiting magnitudes are typically 24.3, 25.1, 24.9, 23.8 (5σ in a 2 aperture) in ugri, respectively, and the typical r-band PSF size is less than 0.7 . The photometry prior to global homogenization is stable at the ∼2% (4%) level in gri (u) with some outliers due to non-photometric conditions, while the astrometry shows a typical 2D rms of 0.03 . Early scientific results include the detection of nine high-z QSOs, fifteen candidate strong gravitational lenses, high-quality photometric redshifts and structural parameters for hundreds of thousands of galaxies.
Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January -April and August -December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5 m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345−9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935−2.53 μm and resolutions 23−33 Å) and imaging with broadband JHK s filters.Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012(April -2013. A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ∼15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHK s imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey.
We present a new (V, BÀV ) color-magnitude diagram of the Carina dwarf spheroidal galaxy (dSph) that extends from the tip of the red giant branch (RGB) down to V $ 25 mag. Data were collected with the Wide Field Imager available at the 2.2 m ESO/MPI telescope and cover an area of %0.3 deg 2 around the center of the galaxy. We confirm the occurrence of a substantial number of old stars with ages around 11 Gyr, together with an intermediate-age population around 5 Gyr. Moreover, we also detected a new, well-defined blue plume of young main-sequence stars with an age, at most, on the order of 1 Gyr. This finding is further supported by the detection of a sizable sample of anomalous Cepheids, whose occurrence can be understood in terms of stars with ages %0.6 Gyr. The evidence for such a young population appears at odds with current cosmological models, which predict that the most recent star formation episodes in dSph's should have taken place 2-3 Gyr ago. At odds with previous results available in the literature, we found that stars along the RGB of old and intermediate-age stellar populations indicate a mean metallicity roughly equal to Z ¼ 0:0004 (½Fe=H % À1:7) and a small dispersion around this value. This finding is further strengthened by the reduced spread in luminosity of RR Lyrae and horizontal-branch stars in the old stellar population and of the red clump in the intermediate-age group. We find evidence of a smooth spatial distribution of the intermediate-age stellar population (%5 Gyr), which appears more centrally concentrated than the oldest one (%11 Gyr). The radial distribution of the old population appears more clumpy, with a peak off-center by %2 0 when compared with the Carina center. Star counts show a well-defined '' shoulder '' in the northeast direction along both the minor and major axes. Current data do not allow us to assess whether this feature is the break in the slope of star-count profiles predicted by Johnston, Sigurdsson, & Hernquist.
We present new distance determinations to the nearby globular M4 (NGC 6121) based on accurate optical and Near Infrared (NIR) mean magnitudes for fundamental (FU) and first overtone (FO) RR Lyrae variables (RRLs), and new empirical optical and NIR Period-Luminosity (PL) and Period-Wesenheit (PW) relations. We have found that optical-NIR and NIR PL and PW relations are affected by smaller standard deviations than optical relations. The difference is the consequence of a steady decrease in the intrinsic spread of cluster RRL apparent magnitudes at fixed period as longer wavelengths are considered. The weighted mean visual apparent magnitude of 44 cluster RRLs is V = 13.329 ± 0.001 (standard error of the mean) ±0.177 (weighted standard deviation) mag. Distances were estimated using RR Lyr itself to fix the zero-point of the empirical PL and PW relations. Using the entire sample (FU+FO) we found weighted mean true distance moduli of 11.35±0.03±0.05 mag and 11.32±0.02±0.07 mag. Distances were also evaluated using predicted metallicity dependent PLZ and PWZ relations. We found weighted mean true distance moduli of 11.283±0.010±0.018 mag (NIR PLZ) and 11.272±0.005±0.019 mag (optical-NIR and NIR PWZ). The above weighted mean true distance moduli agree within 1σ. The same result is found from distances based on PWZ relations in which the color index is independent of the adopted magnitude (11.272±0.004±0.013 mag). These distances agree quite well with the geometric distance provided by (Kaluzny et al. 2013) based on three eclipsing binaries. The available evidence indicates that this approach can provide distances to globulars hosting RRLs with a precision better than 2-3%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.