The region of interest (ROI) extraction is important in hand vein recognition system. The main challenges for accurate extraction of the vein region are to overcome variability in hand size, lighting conditions, orientation, appearance, noisy background, and non-uniform grey levels in foreground region. Here, we propose a new dynamic hand vein ROI extraction, preserving the whole vein area. A hand segmentation process robust to the mentioned challenges, contributing to an accurate definition of hand edge delimitations is proposed. Our approach is validated on both dorsal vein Bosphorus database and palm vein Vera database. Our proposed method accuracy is ∼98% for Bosphorus database and 90% for Vera database. To illustrate the efficiency of the proposed ROI extraction, we insert it as a first block in a hand vein recognition system. Then, a comparison study at system level with recent approaches is carried on, showing an improvement of the whole system area under the curve by a rate of 12% and 2% for Bosphorus and Vera databases, respectively. The speed performances demonstrate a mean run time of 0.73 s for Bosphorus database and 1.2 s for Vera database, proving that the proposed method can be conveniently used on a real-time application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.