We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including single-band finite Hubbard cluster and multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model. PROGRAM SUMMARYProgram Title: EDLib Licensing provisions: MIT Programming language: C++, MPI External routines: ARPACK-NG, ALPSCore library[1] Nature of problem: Finite Hubbard and Anderson models play an essential role in the description of strongly correlated many-particle systems. These models consist of a small number of localized orbitals with Coulomb interaction between electrons and (in case of the Anderson model) non-interacting bath energy levels. The finite Hubbard cluster can be used to study molecular magnets, such as M n 12 , F e 4 , M n 4 , and V 15 , which are currently of interest due to their potential for use in novel technologies such as molecular electronics, solar energy harvesting, thermoelectrics, sensing, and other applications [2,3,4]. The Anderson model can be used to study impurities adsorbed on surfaces [5] and appears as an impurity model in the Dynamic Mean Field Theory [6]. Solution method: The OpenMP and MPI parallelized versions of the finite temperature Lanczos diagonalization method is used to diagonalize Hamiltonian matrix and to compute observables.
DANSSino is a reduced pilot version of a solid-state detector of reactor antineutrinos (to be created within the DANSS project and installed under the industrial 3 GW(th) reactor of the Kalinin Nuclear Power Plant -- KNPP). Numerous tests performed at a distance of 11 m from the reactor core demonstrate operability of the chosen design and reveal the main sources of the background. In spite of its small size (20x20x100 ccm), the pilot detector turned out to be quite sensitive to reactor antineutrinos, detecting about 70 IBD events per day with the signal-to-background ratio about unity.Comment: 16 pages, 11 figures, 3 tables. arXiv admin note: substantial text overlap with arXiv:1304.369
We study the physics of high-temperature cuprate superconductors starting from the highly degenerate four-site plaquette of the $$t-t^{\prime} -U$$ t − t ′ − U Hubbard model as a reference system. The degeneracy causes strong fluctuations when a lattice of plaquettes is constructed. We show that there is a large binding energy between holes when a set of four plaquettes is considered. The next-nearest-neighbour hopping $$t^{\prime}$$ t ′ plays a crucial role in the formation of these strongly bound electronic bipolarons whose coherence at lower temperature could be the explanation for superconductivity. A complementary approach is cluster dual fermion starting from a single degenerate plaquette, which contains the relevant short-ranged fluctuations from the beginning. It gives d-wave superconductivity as the leading instability under a reasonably broad range of parameters. The origin of the pseudogap is also discussed in terms of the coupling of degenerate plaquettes. Thus, some of the essential elements of cuprate superconductivity appear from the local plaquette physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.