The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the highenergy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a threedimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.
The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). The initial configuration and expected performance of the detector and associated systems, as established by test beam measurements and simulation studies, is described.
The elastic constant tensor of an inorganic compound provides a complete description of the response of the material to external stresses in the elastic limit. It thus provides fundamental insight into the nature of the bonding in the material, and it is known to correlate with many mechanical properties. Despite the importance of the elastic constant tensor, it has been measured for a very small fraction of all known inorganic compounds, a situation that limits the ability of materials scientists to develop new materials with targeted mechanical responses. To address this deficiency, we present here the largest database of calculated elastic properties for inorganic compounds to date. The database currently contains full elastic information for 1,181 inorganic compounds, and this number is growing steadily. The methods used to develop the database are described, as are results of tests that establish the accuracy of the data. In addition, we document the database format and describe the different ways it can be accessed and analyzed in efforts related to materials discovery and design.
Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn’s disease and type 2 diabetes1,2. ER stress induces the unfolded protein response (UPR), which involves activation of three transmembrane receptors, ATF6 (activating transcription factor 6), PERK (protein kinase RNA-like endoplasmic reticulum kinase) and IRE1α (inositol-requiring enzyme 1α)3 (Extended Data figure 1a). Once activated, IRE1α recruits TRAF2 (TNF receptor-associated factor 2) to the ER membrane to initiate inflammatory responses via the nuclear factor kappa B (NF-κB) pathway4. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) or nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), detect tissue damage or microbial infection. However, it is not clear which PRRs play a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NLR family of PRRs, are important mediators of ER stress-induced inflammation. The ER stress inducers thapsigargin and dithiothreitol (DTT) triggered production of the pro-inflammatory cytokine interleukin (IL)-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system (T4SS) effector protein VceC into host cells5, was TRAF2, NOD1/2 and RIP2-dependent and could be blunted by treatment with the ER-stress inhibitor tauroursodeoxycholate (TUDCA) or an IRE1α kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1α/TRAF2 signaling pathway provides a novel link between innate immunity and ER stress-induced inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.