Background Human cytomegalovirus (HCMV) is a worldwide infection, causing different troublesome in immunosupressed patients and very related to Human Immunodeficiency Virus 1 (HIV-1) infection, mainly in developing countries, with a co-infection rate of 80% in Africa. The high cost of present treatments and the lack of routinely tests in these countries urge the necessity to develop new molecules or strategies against HCMV. The new treatments should be low-cost and capable of avoiding the emerging problem of resistant virus. Nanoparticles play an important role in several viral infections. Our main focus is to study the potential activity of polyanionic carbosilane dendrimers (PDC), which are hyperbranched molecules with several sulfonate or sulfate groups in their periphery, against different viruses. Results We studied the activity of G1-S4, G2-S16 and G2-S24P PDCs in MRC-5 cell line against HCMV infection by several plaque reduction assays. Our results show that dendrimers present good biocompatibility at the concentrations tested (1–50 µM) for 6 days in cell culture. Interestingly, both G2-S16 and G2-S24P showed a remarked inhibition at 10 µM against HCMV infection. Results on attachment and virucidal assays indicated that the inhibition was not directed to the virus or the virus-cell attachment. However, results of time of addition, showed a longer lasting activity of these dendrimers in comparison to ganciclovir, and the combination of G2-S16 or G2-S24P with ganciclovir increases the HCMV inhibition around 90 %. Conclusions Nanotechnology, in particular polyanionic carbosilane dendrimers, have proved their potential application against HCMV, being capable of inhibiting the infection by themselves or enhancing the activity of ganciclovir, the actual treatment. These compounds represent a low-cost approach to fight HCMV infections.
Background Since the beginning of SARS-CoV2 pandemic, the mortality rate among elderly patients (60–90 years) has been around 50%, so age has been a determining factor of a worse COVID-19 prognosis. Associated with age, the thymic function involution and depletion plays an important role, that could be related to a dysregulated and ineffective innate and adaptive immune response against SARS-CoV2. Our study aims to further in vitro effect of human Thymosin-alpha-1 (α1Thy) treatment on the immune system in population groups with different thymic function levels in the scenario of SARS-CoV2 infection. Results Activation markers such as CD40, CD80 and TIM-3 were upregulated in α1Thy presence, especially in plasmacytoid dendritic cells (pDCs) and, with increased TNFα production was observed compared to untreated condition. Co-cultures of CD4 + and CD8 + T cells with DCs treated with α1Thy in response to SARS-CoV2 peptides showed a decrease in the cytokine production compared to the condition without α1Thy pre-treated. A decrease in CD40L activation co-receptor expression in CD8 + LTs was also observed, as well as an increase in PD1 in CD4 + TLs expression in both age groups. In fact, there are no age-related differences in the immunomodulatory effect of the hormone, and it seems that effector memory and terminally differentiated memory T lymphocyte subsets were the most actively influenced by the immunomodulatory α1Thy effect. Finally, the polyfunctionality measured in SARS-CoV2 Specific-T cells response was maintained in α1Thy presence in total and memory subpopulations CD4 + and CD8 + T-cells, despite decreased proinflammatory cytokines production. Conclusion The hormone α1Thy could reduce, through the modulation of DCs, the amount of proinflammatory cytokines produced by T cells. Moreover, α1Thy improve lymphocyte functionality and could become a beneficial therapeutic alternative as an adjuvant in SARS-CoV2 treatment either in the acute phase after infection or reinfection. In addition, the effect on the T immune response means that α1Thy can be incorporated into the vaccination regimen, especially in the most immunologically vulnerable individuals such as the elderly. Subjects Thymosin alpha 1, Dendritic cells, SARS-CoV2-specific T cells response, Immunomodulation
Human immunodeficiency virus (HIV-1) is still a major problem, not only in developing countries but is also re-emerging in several developed countries, thus the development of new compounds able to inhibit the virus, either for prophylaxis or treatment, is still needed. Nanotechnology has provided the science community with several new tools for biomedical applications. G2-S16 is a polyanionic carbosilane dendrimer capable of inhibiting HIV-1 in vitro and in vivo by interacting directly with viral particles. One of the main barriers for HIV-1 eradication is the reservoirs created in primoinfection. These reservoirs, mainly in T cells, are untargetable by actual drugs or immune system. Thus, one approach is inhibiting HIV-1 from reaching these reservoir cells. In this context, macrophages play a main role as they can deliver viral particles to T cells establishing reservoirs. We showed that G2-S16 dendrimer is capable of inhibiting the infection from infected macrophages to healthy T CD4/CD8 lymphocytes by eliminating HIV-1 infectivity inside macrophages, so they are not able to carry infectious particles to other body locations, thus preventing the reservoirs from forming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.