An aero-thermo-chemical model is developed to simulate the flowfield, including ionization, around atmospheric re-entry configurations, and its interactions with radio-frequency communication signals (e.g. GPS). The model is successfully validated against literature in-flight measurements of the electron number density, and then applied to the re-entry of recently proposed concepts of slender configurations. The advantages of using sharp and slender geometries for re-entry applications, with respect to radio communication problems, are analyzed and discussed. In addition, an experimental test-bed in an arc-jet plasma wind-tunnel has been setup to reproduce on ground the plasmaradiofrequency interaction. The capability to duplicate on-ground the ionization levels encountered during re-entry has been successfully demonstrated. A numerical model of an Argon plasma jet in chemical and thermal non-equilibrium has also been developed, for numerical rebuilding of the experiments. Both electron number densities and electron temperatures have been successfully correlated, demonstrating the ability of arc-jet facilities, integrated with proper numerical tools, to correctly deal with problems of communication attenuation/black-out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.