This paper introduces a deep learning approach to photorealistic universal style transfer that extends the PhotoNet network architecture by adding extra feature-aggregation modules. Given a pair of images representing the content and the reference of style, we augment the state-of-the-art solution mentioned above with deeper aggregation, to better fuse content and style information across the decoding layers. As opposed to the more flexible implementation of PhotoNet (i.e., PhotoNAS), which targets the minimization of inference time, our method aims to achieve better image reconstruction and a more pleasant stylization. We propose several deep layer aggregation architectures to be used as wrappers over PhotoNet, to enhance the stylization and quality of the output image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.