In this paper, we study a final value problem for first order abstract differential equation with positive self-adjoint unbounded operator coefficient. This problem is ill-posed. Perturbing the final condition we obtain an approximate nonlocal problem depending on a small parameter. We show that the approximate problems are well posed and that their solutions converge if and only if the original problem has a classical solution. We also obtain estimates of the solutions of the approximate problems and a convergence result of these solutions. Finally, we give explicit convergence rates. 2004 Elsevier Inc. All rights reserved.
We study a final value problem for first-order abstract differential equation with positive self-adjoint unbounded operator coefficient. This problem is ill-posed. Perturbing the final condition, we obtain an approximate nonlocal problem depending on a small parameter. We show that the approximate problems are well posed and that their solutions converge if and only if the original problem has a classical solution. We also obtain estimates of the solutions of the approximate problems and a convergence result of these solutions. Finally, we give explicit convergence rates.
In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem
Abstract. We study a mixed problem with integral boundary conditions for a third-order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on two-sided a priori estimates and on the density of the range of the operator generated by the considered problem.
In this paper we study the problem of control by the initial conditions of the heat equation with an integral boundary condition. This problem is ill-posed. Perturbing the final condition we obtain an approximate nonlocal problem depending on a small parameter. We show that the approximate problems are well posed. We also obtain estimates of the solutions of the approximate problems and a convergence result of these solutions. Finally, we give explicit convergence rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.