Energy efficient communication is a plenary issue in Wireless Sensor Networks (WSNs). Contemporary energy efficient optimization schemes are focused on reducing power consumption in various aspects of hardware design, data processing, network protocols and operating system. In this paper, optimization of network is formulated by Cuckoo Based Particle Approach (CBPA). Nodes are deployed randomly and organized as static clusters by Cuckoo Search (CS). After the cluster heads are selected, the information is collected, aggregated and forwarded to the base station using generalized particle approach algorithm. The Generalized Particle Model Algorithm (GPMA) transforms the network energy consumption problem into dynamics and kinematics of numerous particles in a force-field. The proposed approach can significantly lengthen the network lifetime when compared to traditional methods.
An association rule is classified as sensitive if its thread of revelation is above certain confidence value. If these sensitive rules were revealed to the public, it is possible to deduce sensitive knowledge from the published data and offers benefit for the business competitors. Earlier studies in privacy preserving association rule mining focus on binary data and has more side effects. But in practical applications the transactions contain the purchased quantities of the items. Hence preserving privacy of quantitative data is essential. The main goal of the proposed system is to hide a group of interesting patterns which contains sensitive knowledge such that modifications have minimum side effects like lost rules, ghost rules, and number of modifications. The proposed system applies Particle Swarm Optimization to a few clusters of particles thus reducing the number of modification. Experimental results demonstrate that the proposed approach is efficient in terms of lost rules, number of modifications, hiding failure with complete avoidance of ghost rules.
A numerical investigation is accomplished for an unsteady laminar free convective flow of a viscous incompressible fluid over an impulsively started semi-infinite vertical cylinder embedded in a porous medium. The level of temperature and concentration at the surface area of the cylinder are assumed to vary as functions of power law type, in the axial coordinate. The problem is governed by a system of coupled nonlinear boundary layer equations with appropriate variable surface boundary conditions and the numerical results are obtained using an implicit finite difference scheme of Crank-Nicholson type. The effects of physical parameters on velocity, temperature and concentration profiles and also on local and mean skin-friction coefficient, Nusselt number and Sherwood number are interpreted graphically. It is observed that the variable temperature and concentration exists in the boundary of cylinder relegates the rate of heat and mass transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.