Significant and persistent decreases in temperature have been observed in very porous materials when they are partially immersed in water at room temperature. As the sample sizes were much smaller than the maximum height of the typical capillary rise, this represents a far-from-equilibrium system. We attribute this thermal decrease to two concurrent actions: (i) the highly porous property of the material used; and (ii) a transition-phase-like process of the water. Thus, the water not only cools down the material surface through evaporation at the sample-air interface, but it also expands within the material, causing a further internal decrease in temperature that cannot be explained solely through evaporation. This latter process is persistent enough to maintain the decrease in temperature over time. This unexpected characteristic of water and its persistence when diffusing inside an extremely porous medium are the most original results of this study. Our results seem in agreement with the recent model on the fourth phase of water
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.