he present study was aimed at evaluation of the toxicity potential of nanoceria on phosphobacteria (Bacillus megaterium ; soil ecosystem), azolla (Anabaena azollae and microalgae ; Aquatic ecosystem) and sorghum (Sorghum bicolor (L.) Moench) pollen grain and photosystem (PS) II quantum yield (terrestrial ecosystem). The study examined the differences in toxicity among a different concentration of nanoceria to each organism and differences in toxicity among the organisms. In each toxicity experiment, the concentration of nanoceria used are 0, 5, 10, 25, 50, 100, 200, 400, 500, and 1000 mg L-1. The result indicated that nanoceria is not toxic to soil microbes, aquatic organisms and terrestrial plants at lower concentration (up to 25 mg L-1). However, above 25 mg L-1 concentration, differential responses between nanoceria and organisms were observed. Higher concentration (500 and 1000 mg L-1) inhibited the growth of phosphobacteria, microalgae, and pollen germination and PS II quantum yield. The adverse effect caused by nanoceria could be associated with the concentration of nanoceria, differences in interactions with the cell with nanoceria, and oxidative damage caused by nanoceria. Among the assays, pollen germination was found to be more sensitive to the nanoceria in the medium, followed by photosystem II quantum yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.