Abstract. Phlebotomine sandflies transmit pathogens that affect humans and animals worldwide. We review the roles of phlebotomines in the spreading of leishmaniases, sandfly fever, summer meningitis, vesicular stomatitis, Chandipura virus encephalitis and Carrión's disease. Among over 800 species of sandfly recorded, 98 are proven or suspected vectors of human leishmaniases; these include 42 Phlebotomus species in the Old World and 56 Lutzomyia species in the New World (all: Diptera: Psychodidae). Based on incrimination criteria, we provide an updated list of proven or suspected vector species by endemic country where data are available. Increases in sandfly diffusion and density resulting from increases in breeding sites and blood sources, and the interruption of vector control activities contribute to the spreading of leishmaniasis in the settings of human migration, deforestation, urbanization and conflict. In addition, climatic changes can be expected to affect the density and dispersion of sandflies. Phlebovirus infections and diseases are present in large areas of the Old World, especially in the Mediterranean subregion, in which virus diversity has proven to be higher than initially suspected. Vesiculovirus diseases are important to livestock and humans in the southeastern U.S.A. and Latin America, and represent emerging human threats in parts of India. Carrión's disease, formerly restricted to regions of elevated altitude in Peru, Ecuador and Colombia, has shown recent expansion to non-endemic areas of the Amazon basin.
Leishmania infantum (syn. L. chagasi) is the causative agent of visceral leishmaniasis (VL) in the New World (NW) with endemic regions extending from southern USA to northern Argentina. The two hypotheses about the origin of VL in the NW suggest (1) recent importation of L. infantum from the Old World (OW), or (2) an indigenous origin and a distinct taxonomic rank for the NW parasite. Multilocus microsatellite typing was applied in a survey of 98 L. infantum isolates from different NW foci. The microsatellite profiles obtained were compared to those of 308 L. infantum and 20 L. donovani strains from OW countries previously assigned to well-defined populations. Two main populations were identified for both NW and OW L. infantum. Most of the NW strains belonged to population 1, which corresponded to the OW MON-1 population. However, the NW population was much more homogeneous. A second, more heterogeneous, population comprised most Caribbean strains and corresponded to the OW non-MON-1 population. All Brazilian L. infantum strains belonged to population 1, although they represented 61% of the sample and originated from 9 states. Population analysis including the OW L. infantum populations indicated that the NW strains were more similar to MON-1 and non-MON-1 sub-populations of L. infantum from southwest Europe, than to any other OW sub-population. Moreover, similarity between NW and Southwest European L. infantum was higher than between OW L. infantum from distinct parts of the Mediterranean region, Middle East and Central Asia. No correlation was found between NW L. infantum genotypes and clinical picture or host background. This study represents the first continent-wide analysis of NW L. infantum population structure. It confirmed that the agent of VL in the NW is L. infantum and that the parasite has been recently imported multiple times to the NW from southwest Europe.
Abstract. Methods of finding larvae and pupae of phlebotomine sandflies (Diptera: Psychodidae) are described and the known types of breeding sites used by sandflies are listed. Three ways of detecting sandfly breeding places are the use of emergence traps placed over potential sources to catch newly emerged adult sandflies; flotation of larvae and pupae from soil, etc., and desiccation of media to drive out the larvae. Even so, remarkably little information is available on the ecology of the developmental stages of sandflies, despite their importance as vectors of Leishmania, Bartonella and phleboviruses affecting humans and other vertebrates in warmers parts of the world. Regarding the proven or suspected vectors of leishmaniases, information on breeding sites is available for only 15 out of 29 species of sandflies involved in the Old World and 12 out of 44 species of sandflies involved in the Americas, representing $3% of the known species of Phlebotominae.Ecotopes occupied by immature phlebotomines are usually organically rich moist soils, such as the rain forest floor (Lutzomyia intermedia, Lu. umbratilis, Lu. whitmani in the Amazon; Lu. gomezi, Lu. panamensis, Lu. trapidoi in Panama), or contaminated soil of animal shelters (Lu. longipalpis s.l. in South America, Phlebotomus argentipes in India; P. chinensis in China; P. ariasi, P. perfiliewi, P. perniciosus in Europe). Developmental stages of some species (P. langeroni and P. martini in Africa; P. papatasi in Eurasia; Lu. longipalpis s.l. in South America), have been found in a wide range of ecotopes, and many species of sandflies employ rodent burrows as breeding sites, although the importance of this niche is unclear. Larvae of some phlebotomines have been found in what appear to be specialized niches such as Lu. ovallesi on buttress roots of trees in Panama; P. celiae in termite hills in Kenya; P. longipes and P. pedifer in caves and among rocks in East Africa. Old World species found as immatures in the earthen floor of human habitations include P. argentipes, P. chinensis, P. martini and P. papatasi. Much more information on sandfly breeding sites is required to facilitate their control by source reduction.
Background Rhodnius prolixus is the main vector of Chagas disease in Venezuela. Here, domestic infestations of poor quality rural housing have persisted despite four decades of vector control. This is in contrast to the Southern Cone region of South America, where the main vector, Triatoma infestans, has been eliminated over large areas. The repeated colonisation of houses by silvatic populations of R. prolixus potentially explains the control difficulties. However, controversy surrounds the existence of silvatic R. prolixus: it has been suggested that all silvatic populations are in fact Rhodnius robustus, a related species of minor epidemiological importance. Here we investigate, by direct sequencing (mtcytb, D2) and by microsatellite analysis, 1) the identity of silvatic Rhodnius and 2) whether silvatic populations of Rhodnius are isolated from domestic populations.Methods and FindingsDirect sequencing confirmed the presence of R. prolixus in palms and that silvatic bugs can colonise houses, with house and palm specimens sharing seven cytb haplotypes. Additionally, mitochondrial introgression was detected between R. robustus and R. prolixus, indicating a previous hybridisation event. The use of ten polymorphic microsatellite loci revealed a lack of genetic structure between silvatic and domestic ecotopes (non-significant FST values), which is indicative of unrestricted gene flow.ConclusionsOur analyses demonstrate that silvatic R. prolixus presents an unquestionable threat to the control of Chagas disease in Venezuela. The design of improved control strategies is essential for successful long term control and could include modified spraying and surveillance practices, together with housing improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.