Importance of the condition monitoring and predictive maintenance in motion systems is growing up as motion systems quantum and their complexity (number of axes, performance parameters) increases with increasing the automation of huge range of human activities and manufacturing processes. Probability of failures increases with the system complexity. Many faults and indication of their propagation in the electric drives would require additional sensors or hardware, higher bandwidth and sampling frequencies of feedback sensors, high computing power etc. for development of sophisticated methods to detect specific faults with good sensitivity, robustness and reliability under any operating condition. This paper presents an approach to the condition monitoring and prognosis applicable into the existing systems. These methods use the information available in the traditional electric drives-especially the information from the individual sensors in a voltage source inverter (VSI) and/or an electric motor. Condition indicators for these methods are based on application specific operating states or actions, which generates typical patterns in the signals. The condition monitoring is based on observing the deviations of these patterns between the healthy system and the system with fault propagating. The implementation strategy is described in the paper and some demonstration examples are shown as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.