During the design of extra-high-voltage transmission lines, studies of the influence of asymmetry due to the phase difference of the parameters on its processes and the electrical network were performed. To compensate for this source of asymmetry for transmission lines longer than 100 km, a relatively simple technical means was proposed and implemented—phase transposition (change of the mutual location of phase wires in space). However, at the same time transposition causes additional capital costs in construction and reduces reliability during operation, so when designing a specific transmission line, extra-high-voltage is desirable to evaluate the effectiveness of the use of this measure in the real electricity network. Thus, under certain conditions, even for a transmission line 600 km in length, it was possible to perform either an incomplete transposition cycle, or abandon this measure altogether.
Molecular dynamics simulations have been performed for a model aqueous solution of mucin. As mucin is a central part of lubricin, a key component of synovial fluid, we investigate its ability to form cross-linked networks. Such network formation could be of major importance for the viscoelastic properties of the soft-matter system and crucial for understanding the lubrication mechanism in articular cartilage. Thus, the inter- and intra-molecular interaction energies between the residues of mucin are analyzed. The results indicate that the mucin concentration significantly impacts its cross-linking behavior. Between 160 g/L and 214 g/L, there seems to be a critical concentration above which crowding begins to alter intermolecular interactions and their energies. This transition is further supported by the mean squared displacement of the molecules. At a high concentration, the system starts to behave subdiffusively due to network development. We also calculate a sample mean squared displacement and p-variation tests to demonstrate how the statistical nature of the dynamics is likewise altered for different concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.