A thorough examination of the results of a time‐dependent computer model of a dipole thunderstorm revealed that there are numerous similarities between the time‐averaged electrical properties and the steady state properties of an active thunderstorm. Thus, the electrical behavior of the atmosphere in the vicinity of a thunderstorm be can be determined with a formulation similar to what was first described by Holzer and Saxon in 1952. From the Maxwell continuity equation of electric current, a simple analytical equation was derived that expresses a thunderstorm's average current contribution to the global electric circuit in terms of the generator current within the thundercloud, the intracloud lightning current, the cloud‐to‐ground lightning current, the altitudes of the charge centers, and the conductivity profile of the atmosphere. This equation was found to be nearly as accurate as the more computationally expensive numerical model, even when it is applied to a thunderstorm with a reduced conductivity thundercloud, a time‐varying generator current, a varying flash rate, and a changing lightning mix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.