An empirical fit is described to measurements of inclusive inelastic electron-proton cross sections in the kinematic range of four-momentum transfer 0 ≤ Q 2 < 8 GeV 2 and final state invariant mass 1.1 < W < 3.1 GeV. The fit is constrained by the recent high precision longitudinal and transverse (L/T) separated cross section measurements from Jefferson Lab Hall C, un-separated Hall C measurements up to Q 2 ≈ 7.5 GeV 2 , and photoproduction data at Q 2 = 0. Compared to previous fits, the present fit covers a wider kinematic range, fits both transverse and longitudinal cross sections, and features smooth transitions to the photoproduction data at Q 2 = 0 and DIS data at high Q 2 and W .
We report the results of a new Rosenbluth measurement of the proton electromagnetic form factors at Q2 values of 2.64, 3.20, and 4.10 GeV2. Cross sections were determined by detecting the recoiling proton, in contrast to previous measurements which detected the scattered electron. Cross sections were determined to 3%, with relative uncertainties below 1%. The ratio mu(p)G(E)/G(M) was determined to 4%-8% and showed mu(p)G(E)/G(M) approximately 1. These results are consistent with, and much more precise than, previous Rosenbluth extractions. They are inconsistent with recent polarization transfer measurements of similar precision, implying a systematic difference between the techniques.
Future high-precision neutrino interaction experiments are needed to extend the current program of GeV-scale neutrino interactions and should include:1. A feasibility study of a high-statistics hydrogen or deuterium scattering experiment to supplement the currently poorly known (anti)neutrino-nucleon cross sections.2. The need for (anti)neutrino Ar scattering data in the energy range relevant for the DUNE experiment.3. The possibility of muon-based neutrino beams providing extremely accurate knowledge of the neutrino flux and an intense electron neutrino beam.• Current and future long-and short-baseline neutrino oscillation programs should evaluate and articulate what additional neutrino-nucleus interaction data is required to meet their ambitious goals and support experiments that provide this data.In addition to these general challenges facing the community, there are more specific concerns for particular topics and interaction channels. These are summarized below in the form of observations, problem description or recommendations. For a deeper insight, the reader is encouraged to consult the subsequent sections of this paper.
New Jefferson Lab data are presented on the nuclear dependence of the inclusive cross section from (2)H, (3)He, (4)He, (9)Be and (12)C for 0.3 < x < 0.9, Q(2) approximately 3-6 GeV(2). These data represent the first measurement of the EMC effect for (3)He at large x and a significant improvement for (4)He. The data do not support previous A-dependent or density-dependent fits to the EMC effect and suggest that the nuclear dependence of the quark distributions may depend on the local nuclear environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.