BackgroundChronic pain, especially back pain, is a prevalent condition that is associated with disability, poor health status, anxiety and depression, decreased quality of life, and increased health services use and costs. Current evidence suggests that exercise is an effective strategy for managing chronic pain. However, there are few clinical programs that use generally available tools and a relatively low-cost approach to help patients with chronic back pain initiate and maintain an exercise program.ObjectiveThe objective of the study was to determine whether a pedometer-based, Internet-mediated intervention can reduce chronic back pain-related disability.MethodsA parallel group randomized controlled trial was conducted with 1:1 allocation to the intervention or usual care group. 229 veterans with nonspecific chronic back pain were recruited from one Department of Veterans Affairs (VA) health care system. Participants randomized to the intervention received an uploading pedometer and had access to a website that provided automated walking goals, feedback, motivational messages, and social support through an e-community (n=111). Usual care participants (n=118) also received the uploading pedometer but did not receive the automated feedback or have access to the website. The primary outcome was measured using the Roland Morris Disability Questionnaire (RDQ) at 6 months (secondary) and 12 months (primary) with a difference in mean scores of at least 2 considered clinically meaningful. Both a complete case and all case analysis, using linear mixed effects models, were conducted to assess differences between study groups at both time points.ResultsBaseline mean RDQ scores were greater than 9 in both groups. Primary outcome data were provided by approximately 90% of intervention and usual care participants at both 6 and 12 months. At 6 months, average RDQ scores were 7.2 for intervention participants compared to 9.2 for usual care, an adjusted difference of 1.6 (95% CI 0.3-2.8, P=.02) for the complete case analysis and 1.2 (95% CI -0.09 to 2.5, P=.07) for the all case analysis. A post hoc analysis of patients with baseline RDQ scores ≥4 revealed even larger adjusted differences between groups at 6 months but at 12 months the differences were no longer statistically significant.ConclusionsIntervention participants, compared with those receiving usual care, reported a greater decrease in back pain-related disability in the 6 months following study enrollment. Between-group differences were especially prominent for patients reporting greater baseline levels of disability but did not persist over 12 months. Primarily, automated interventions may be an efficient way to assist patients with managing chronic back pain; additional support may be needed to ensure continuing improvements.Trial RegistrationClinicalTrials.gov NCT00694018; http://clinicaltrials.gov/ct2/show/NCT00694018 (Archived by WebCite at http://www.webcitation.org/6IsG4Y90E).
Introduction: Online Diabetes Prevention Programs (DPPs) can be scaled-up and delivered broadly. However, little is known about real-world effectiveness and how outcomes compare with in-person DPP. This study examined online DPP weight loss and participation outcomes and secondarily compared outcomes among participating individuals with parallel in-person interventions. Study design: A large non-randomized trial supplemented by a comparative analysis of participating individuals from a concurrent trial of two parallel in-person programs: in-person DPP and the Veterans Administration’s standard of care weight loss program (MOVE!). Setting/participants: Obese/overweight Veterans with prediabetes enrolled in online DPP (n=268) between 2013 and 2014. Similar eligibility criteria were used to enroll in-person participants between 2012 and 2014 (n=273 in-person DPP, n=114 MOVE!) within a separate trial. Intervention: Online DPP included a virtual group format, live e-coach, weekly modules delivered asynchronously and wireless home scales. In-person programs included eight to 22 group-based, face-to-face sessions. Main outcomes measures: Weight change at 6 and 12 months, using wirelessly uploaded home scale data or electronic medical record weights from clinical in-person visits. Outcomes were analyzed between 2015 and 2017. Results: From 1,182 invitations, 268 (23%) participants enrolled in online DPP. Among these, 158 (56%) completed eight or more modules; mean weight change was –4.7 kg at 6 months and –4.0 kg at 12 months. In a supplemental analysis of participants completing one or more sessions/modules, online DPP participants were most likely to complete eight or more sessions/modules (87% online DPP vs 59% in-person DPP vs 55% MOVE!, p<0.001). Online and in-person DPP participants lost significantly more weight than MOVE! participants at 6 and 12 months; there was no significant difference in weight change between online and in-person DPP. Conclusions: An intensive, multifaceted online DPP intervention had higher participation but similar weight loss compared to in-person DPP. An intensive, multifaceted online DPP intervention may be as effective as in-person DPP and help expand reach to those at risk.
BackgroundThe Diabetes Prevention Program (DPP) is an effective lifestyle intervention to reduce incidence of type 2 diabetes. However, there are gaps in knowledge about how to implement DPP. The aim of this study was to evaluate implementation of DPP via assessment of a clinical demonstration in the Veterans Health Administration (VHA).MethodsA 12-month pragmatic clinical trial compared weight outcomes between the Veterans Affairs Diabetes Prevention Program (VA-DPP) and the usual care MOVE!® weight management program (MOVE!). Eligible participants had a body mass index (BMI) ≥30 kg/m2 (or BMI ≥ 25 kg/m2 with one obesity-related condition), prediabetes (glycosylated hemoglobin (HbA1c) 5.7–6.5% or fasting plasma glucose (FPG) 100–125 mg/dL), lived within 60 min of their VA site, and had not participated in a weight management program within the last year. Established evaluation and implementation frameworks were used to guide the implementation evaluation. Implementation barriers and facilitators, delivery fidelity, participant satisfaction, and implementation costs were assessed. Using micro-costing methods, costs for assessment of eligibility and scheduling and maintaining adherence per participant, as well as cost of delivery per session, were also assessed.ResultsSeveral barriers and facilitators to Reach, Adoption, Implementation, Effectiveness and Maintenance were identified; barriers related to Reach were the largest challenge encountered by site teams. Fidelity was higher for VA-DPP delivery compared to MOVE! for five of seven domains assessed. Participant satisfaction was high in both programs, but higher in VA-DPP for most items. Based on micro-costing methods, cost of assessment for eligibility was $68/individual assessed, cost of scheduling and maintaining adherence was $328/participant, and cost of delivery was $101/session.ConclusionsMulti-faceted strategies are needed to reach targeted participants and successfully implement DPP. Costs for assessing patients for eligibility need to be carefully considered while still maximizing reach to the targeted population.
Collections of Puccinia triticina were obtained from rust infected wheat leaves by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio Valley, Southeast, California, and the Pacific Northwest, in order to determine the virulence of the wheat leaf rust fungus in 2003. Single uredinial isolates (580 in total) were derived from the wheat leaf rust collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, Lr30, LrB, Lr10, Lr14a, and Lr18. In the United States in 2003, 52 virulence phenotypes of P. triticina were found. Virulence phenotype MBDS, which has been selected by virulence to resistance gene Lr17, was the most common phenotype in the United States. MBDS was found in the Southeast, Great Plains, the Ohio Valley, and California. Virulence phenotype THBJ, which has been selected by virulence to genes Lr16 and Lr26, was the second most common phenotype, and was found in the southern and northern central Great Plains region. Phenotype MCDS, which has been selected by virulence to genes Lr17 and Lr26, was the third most common phenotype and occurred in the same regions as MBDS. The use of wheat cultivars with leaf rust seedling resistance genes has selected leaf rust phenotypes with virulence to genes Lr9, Lr16, Lr17, Lr24, and Lr26. The population of P. triticina in the United States is highly diverse for virulence phenotypes, which will continue to present a challenge for the development of wheat cultivars with effective durable resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.