Stabilizing the carbon dioxide–induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power requirements that are free of carbon dioxide emissions could be several times what we now derive from fossil fuels (∼10 13 watts), even with improvements in energy efficiency. Here we survey possible future energy sources, evaluated for their capability to supply massive amounts of carbon emission–free energy and for their potential for large-scale commercialization. Possible candidates for primary energy sources include terrestrial solar and wind energy, solar power satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil fuels from which carbon has been sequestered. Non–primary power technologies that could contribute to climate stabilization include efficiency improvements, hydrogen production, storage and transport, superconducting global electric grids, and geoengineering. All of these approaches currently have severe deficiencies that limit their ability to stabilize global climate. We conclude that a broad range of intensive research and development is urgently needed to produce technological options that can allow both climate stabilization and economic development.
The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stability of a tokamak plasma surrounded by an external resistive wall is studied. A complex non-self-adjoint eigenvalue problem for the stability of general kink and tearing modes is formulated, solved numerically, and applied to high β tokamaks. Results indicate that toroidal plasma flow, in conjunction with dissipation in the plasma, can open a window of stability for the position of the external wall. In this window, stable plasma beta values can significantly exceed those predicted by the Troyon scaling law with no wall. Computations utilizing experimental data indicate good agreement with observations.
A general circuit formulation of resistive wall mode (RWM) feedback stabilization developed by Boozer [Phys. Plasmas 5, 3350 (1998)] has been used as the basis for the VALEN computer code that calculates the performance of an active control system in arbitrary geometry. The code uses a finite element representation of a thin shell structure in an integral formulation to model arbitrary conducting walls. This is combined with a circuit representation of stable and unstable plasma modes. Benchmark comparisons of VALEN results with large aspect ratio analytic model of the current driven kink mode are in very good agreement. VALEN also models arbitrary sensors, control coils, and the feedback logic connecting these sensors and control coils to provide a complete simulation capability for feedback control of plasma instabilities. VALEN modeling is in good agreement with experimental results on DIII-D [Garofalo et al., Nucl. Fusion 40, 1491 (2000)] and HBT-EP [Cates et al., Phys. Plasmas 7, 3133 (2000)]. VALEN feedback simulations have also been used to evaluate and optimize the sensor/coil configurations for present and planned RWM experiments on DIII-D. These studies have shown a clear advantage for the use of local poloidal field sensors driving a “mode control” feedback logic control loop and configurations which minimize the control coil coupling to the stabilizing resistive wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.