Enceladus, a small icy satellite of Saturn, has active plumes jetting from localized fractures ('tiger stripes') within an area of high heat flux near the south pole. The plume characteristics and local high heat flux have been ascribed either to the presence of liquid water within a few tens of metres of the surface, or the decomposition of clathrates. Neither model addresses how delivery of internal heat to the near-surface is sustained. Here we show that the most likely explanation for the heat and vapour production is shear heating by tidally driven lateral (strike-slip) fault motion with displacement of approximately 0.5 m over a tidal period. Vapour produced by this heating may escape as plumes through cracks reopened by the tidal stresses. The ice shell thickness needed to produce the observed heat flux is at least 5 km. The tidal displacements required imply a Love number of h2 > 0.01, suggesting that the ice shell is decoupled from the silicate interior by a subsurface ocean. We predict that the tiger-stripe regions with highest relative temperatures will be the lower-latitude branch of Damascus, Cairo around 60 degrees W longitude and Alexandria around 150 degrees W longitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.