International audienceA numerical hydrodynamic study of femtosecond laser ablation is presented. A detailed analysis of material decomposition is performed using a thermodynamically complete equation of state with separate stable and metastable phase states and phase boundaries. The lifetime of the metastable liquid state is estimated based on the classical theory of homogeneous nucleation. In addition, mechanical fragmentation of the target material is controlled based on available criteria. As a result, several ablation mechanisms are observed. A major fraction of the ablated material, however, is found to originate from the metastable liquid region, which is decomposed either thermally in the vicinity of the critical point into a liquid-gas-mixture or mechanically at high strain rate and negative pressure into liquid droplets and chunks. The calculation results explain available experimental findings
Laser ablation in liquids is now commonly used to produce colloidal nanoparticles (NPs) that have found numerous applications in different areas. In experiments, NPs of different materials can be rather easily obtained by using laser systems with various pulse durations, shapes, wavelengths, and fluences. In this paper, we focus our attention on metal (gold) NPs produced by ultra-short laser pulses. To better understand the mechanisms of the NPs formation, we perform modeling of femtosecond laser interactions with a gold target in the presence of liquid (water). Simulation of the ablation process over several nanoseconds shows that most of the primary NPs originate from the ablated metastable liquid layer, whereas only a minority is formed by condensation inside the cavitation bubble. These particles will further grow/evaporate, and coagulate during a much longer collision stage in the liquid colloid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.