The liquid turbulence kinetic energy transfer between the liquid and gas phases was investigated for upward air-water bubbly flow in a 200 mm diameter pipe. The liquid and gas axial momentum equations were analyzed to estimate the interfacial drag from experimental measurements, and hence the liquid turbulence production due to the relative velocity of the bubbles. The liquid turbulence production due to the bubbles was significantly higher than that due to the liquid shear. The liquid turbulence kinetic energy budget indicates that the turbulence production due to the bubbles is approximately balanced by the viscous dissipation, estimated assuming an isotropic turbulence structure, with negligible dissipation due to the bubbles. The liquid turbulence kinetic energy spectra showed an addition of energy at length scales in the range corresponding to the bubble diameter. A model for the turbulence energy production spectra due to the bubbles is proposed and used to investigate the spectral turbulence energy budget. The model indicates that when there is a liquid turbulence augmentation, most of the production occurs in the low wave number range with only a small overlap with the viscous dissipation region. In the case of a turbulence suppression, most of the bubble production occurs in the same wave number range as the viscous dissipation.
An experimental investigation was performed in air-water bubbly flow to study the liquid turbulence spectra in a 200mm diameter vertical pipe. A dual optical probe was used to measure the local void fraction and bubble diameter while the liquid velocities were measured using hot-film anemometry. Experiments were performed at two liquid superficial velocities of 0.2 and 0.68m/s for gas superficial velocities in the range of 0 to 0.18m/s. Generally, as the void fraction increases there is a turbulence augmentation. However, a turbulence suppression was observed near the pipe wall at the higher liquid flow rate for low void fraction. In the augmentation case, the turbulence spectra showed a significant increase in the energy at the wave number range comparable to the bubble diameter. In the suppression case, the spectra showed that suppression initially occurs at the low wave number range and then extends to higher wave numbers as suppression increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.