The release of endogenous oxytocin and vasopressin by rat paraventricular and supraoptic nuclei in vitro during a 10-min period, 30 min after beginning the incubation, was measured radioimmunologically. Mean basal hormone release per 10 min and per pair of nuclei was: 128.4 +/- 12.4 (S.E.M.) pg vasopressin (n = 15) and 39.0 +/- 3.0 pg oxytocin (n = 66) for supraoptic nuclei from male rats; 273.9 +/- 42.6 pg vasopressin (n = 11) and 34.2 +/- 3.5 pg oxytocin (n = 15) for supraoptic nuclei from lactating rats; 70.0 +/- 8.6 pg vasopressin (n = 52) and 21.8 +/- 1.3 pg oxytocin (n = 68) for paraventricular nuclei from male rats; 59.1 +/- 8.6 pg vasopressin (n = 10) and 27.0 +/- 4.6 pg oxytocin (n = 16) for paraventricular nuclei from lactating rats. In male and lactating rats, both nuclei contained and released more vasopressin than oxytocin. For oxytocin alone, the paraventricular nucleus of male rats contained and released significantly less hormone than the supraoptic nucleus. This difference was not apparent in lactating rats. For vasopressin alone, the paraventricular nucleus contained and released significantly less hormone than the supraoptic nucleus in both male and lactating rats. When the hormone released was calculated as a percentage of the total tissue content the release was about 0.9% for oxytocin from both nuclei in male and lactating rats and also for vasopressin in lactating rats, but was only about 0.5% for vasopressin from both nuclei in male rats. The influence of oxytocin and analogues of oxytocin (including one antagonist) upon the release of oxytocin and vasopressin was studied. Adding oxytocin to the incubation medium (0.4-4 nmol/1 solution) induced a dose-dependent rise in oxytocin release from both nuclei of male or lactating rats. A 4 nmol/l solution of isotocin had a similar effect to a 0.4 nmol/l solution of oxytocin, but arginine-vasopressin never affected basal release of oxytocin. In no case was vasopressin release modified. An oxytocin antagonist (1 mumol/l solution) significantly reduced basal oxytocin release and blocked the stimulatory effect normally induced by exogenous oxytocin, as did gallopamil hydrochloride (D600, 10 mumol/l solution), a Ca2+ channel blocker, or incubation in a Ca2+-free medium. These findings are discussed in relation to the literature on the central effects of neurohypophysial peptides. It may be concluded that the regulatory role of endogenous oxytocin in the hypothalamus on the milk-ejection reflex could result from its local release in the extracellular spaces of magnocellular nuclei.
Cerebrospinal fluid-contacting neurons (CSFcNs) occur in various brain regions of lower vertebrates. In mammals, they are restricted to medullospinal areas, and little is known about their projection sites. In the present work, we investigated some morphofunctional characteristics of such neurons in the rat spinal cord by light and electron microscopic immunocytochemistry. CSFcNs expressing the P2X(2) subunit of purinergic receptors were present throughout the spinal cord, though more numerous at lower thoracolumbar and sacral levels. These neurons coexpressed GAD and the polysialylated neural cell adhesion molecule (PSA-NCAM), a marker of cellular plasticity. From low thoracic levels downward, tiny amyelinic axons (less than 200 nm in diameter) were tightly packed in bundles, which ran along the ependyma and extended ventrally, eventually concentrating against the walls of the ventral median fissure. In addition to P2X(2), GAD, gamma-aminobutyric acid (GABA), and PSA, these axons expressed GAP-43 immunoreactivity. Moreover, they were labelled along their entire lengths with antibodies against synaptotagmin and synaptophysin, but these failed to reveal intraspinal terminal fields. Taken together, our observations indicate the presence in the rat spinal cord of a highly plastic system of GABAergic CSFcNs that express the P2X(2) subunit of purinergic receptors. The function of this original system remains open to question. In these neurons, the P2X(2) receptors may confer a sensitivity to ATP either present in the CSF or released by nearby neurons of the central autonomic area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.