Escherichia coli strains with K capsular polysaccharides are relatively resistant to phagocytosis by polymorphonuclear leukocytes, in contrast to E. coli strains without K antigens. This inhibition of phagocytosis is related to an impaired recognition of the K+ strains by the phagocytes due to ineffective opsonization. All five strains without K antigens were readily phagocytized after opsonization in 5% normal serum, compared with no uptake of the K+ strains. Evidence is presented that the decreased opsonization of the K+ strains in normal serum is caused by a low rate of complement activation of the strains, with subsequent absence of C3b fixation or C3d fixation or both to the cell wall of the bacteria. After removal of the K+ antigens by heating of a K+ E. coli strain, the strain was able to activate complement, to bind C3b or C3d or both, and to become opsonized. Complement was then activated via the classical and alternative pathways, which was comparable to the complement consumption by K- E. coli.
Polymorphonuclear leukocytes (PMN) can mediate cytotoxic reactions against virus infected targets cells. We observed very efficient binding of PMN to HSV-infected fibroblasts when loaded with HSV-specific antibodies. Using electron microscopy, infected fibroblasts were found to be totally surrounded by PMN and the phagocytosis of virions and fragments of infected cells was demonstrated. To quantify and study this phenomenon, and to compare PMN with monocytes, we developed radiometric and fluorometric phagocytosis assays. Leukocytes were mixed with [3H]glucosamine- or FITC-labeled virus and incubated at 37 degrees C. PMN associated radioactivity or fluorescence per cell as measured by flow cytometry was determined. PMN phagocytosis was dependent on the presence of specific anti-HSV antibodies and could be enhanced by addition of complement. Monocytes were also able to phagocytize virions; however, the rate of uptake was less than that for PMN. Under optimal conditions the total amount of herpes simplex particles that could be associated with one PMN or monocyte was about 10,000. PMN and monocytes are capable of phagocytosis of HSV. This may be an important factor in preventing the spread of infection in vivo.
The effects of the lipopolysaccharide (LPS) of Escherichia coli J5 and 0111B4 on the function of human polymorphonuclear leukocytes (PMN) were tested. E. coli J5 is a UDP-galactose-4-epimerase-deficient mutant of E. coli 0111B4, and its LPS, therefore, contains mainly lipid A, as it lacks the polysaccharide side chains. PMN which had been incubated with J5 LPS showed decreased phagocytic, chemotactic, and metabolic activities as compared with control PMN. In contrast, incubation of PMN with 0111B4 LPS had no effect or even an enhancing effect on PMN function. When lipid A and the polysaccharide fraction were isolated from 0111B4 LPS, it was shown that lipid A had the same deleterious effect on PMN function as did J5 LPS and that the LPS fraction had no effect. When PMN were incubated with J5 LPS or lipid A, it could be shown that these structures were able to induce PMN to generate superoxide and chemiluminescence. 0111B4 LPS and the polysaccharide component were able to generate a metabolic burst by the PMN to a lesser extent. The induced defects in PMN function by J5 LPS could be prevented when polymyxin B or an oxygen-radical scavenger was present. We hypothesize that the lipid A portion of LPS is toxic for PMN due to the induction of toxic oxygen species by the PMN. These toxic oxygen species destroy the phagocytic, chemotactic, and metabolic activities of the PMN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.