This paper is mainly devoted to the study of the so-called full Lipschitzian stability of local solutions to finite-dimensional parameterized problems of constrained optimization, which has been well recognized as a very important property from both viewpoints of optimization theory and its applications. Based on secondorder generalized differential tools of variational analysis, we obtain necessary and sufficient conditions for fully stable local minimizers in general classes of constrained optimization problems including problems of composite optimization, mathematical programs with polyhedral constraints as well as problems of extended and classical nonlinear programming with twice continuously differentiable data.Key words. variational analysis, constrained parametric optimization, nonlinear and extended nonlinear programming, full stability of local minimizers, strong regularity, second-order subdifferentials, parametric proxregularity and amenability AMS subject classifications. 49J52, 90C30, 90C31 Abbreviated title. Full stability in optimization
The paper is mainly devoted to systematic developments and applications of geometric aspects of second-order variational analysis that are revolved around the concept of parabolic regularity of sets. This concept has been known in variational analysis for more than two decades while being largely underinvestigated. We discover here that parabolic regularity is the key to derive new calculus rules and computation formulas for major second-order generalized differential constructions of variational analysis in connection with some properties of sets that go back to classical differential geometry and geometric measure theory. The established results of second-order variational analysis and generalized differentiation, being married to the developed calculus of parabolic regularity, allow us to obtain novel applications to both qualitative and quantitative/numerical aspects of constrained optimization including second-order optimality conditions, augmented Lagrangians, etc. under weak constraint qualifications.
The paper is devoted to a comprehensive study of composite models in variational analysis and optimization the importance of which for numerous theoretical, algorithmic, and applied issues of operations research is difficult to overstate. The underlying theme of our study is a systematical replacement of conventional metric regularity and related requirements by much weaker metric subregulatity ones that lead us to significantly stronger and completely new results of first-order and second-order variational analysis and optimization. In this way we develop extended calculus rules for first-order and secondorder generalized differential constructions with paying the main attention in second-order variational theory to the new and rather large class of fully subamenable compositions. Applications to optimization include deriving enhanced no-gap second-order optimality conditions in constrained composite models, complete characterizations of the uniqueness of Lagrange multipliers and strong metric subregularity of KKT systems in parametric optimization, etc.
The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to second-order cone programs (SOCPs) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sufficient conditions under the corresponding constraint qualifications. We also establish close relationships between full stability of local minimizers for SOCPs and strong regularity of the associated generalized equations at nondegenerate points. Our approach is mainly based on advanced tools of second-order variational analysis and generalized differentiation.
Abstract. In this paper we introduce the notions of critical and noncritical multipliers for variational systems and extend to a general framework the corresponding notions by Izmailov and Solodov developed for classical Karush-Kuhn-Tucker (KKT) systems. It has been well recognized that critical multipliers are largely responsible for slow convergence of major primal-dual algorithms of optimization. The approach of this paper allows us to cover KKT systems arising in various classes of smooth and nonsmooth problems of constrained optimization including composite optimization, minimax problems, etc. Concentrating on a polyhedral subdifferential case and employing recent results of second-order subdifferential theory, we obtain complete characterizations of critical and noncritical multipliers via the problem data. It is shown that noncriticality is equivalent to a certain calmness property of a perturbed variational system and that critical multipliers can be ruled out by full stability of local minimizers in problems of composite optimization. For the latter class we establish the equivalence between noncriticality of multipliers and robust isolated calmness of the associated solution map and then derive explicit characterizations of these notions via appropriate second-order sufficient conditions. It is finally proved that the Lipschitzlike/Aubin property of solution maps yields their robust isolated calmness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.