In this work we present the evaluation results of our 3D sonar camera system. The system consists of a matrix antenna array with 1024 single transducer elements and our in house developed DiPhAS sonar beamformer - a 128 channel FPGA-based beamforming system with a 1:8 multiplexing device for each channel. The system is designed to be applicable to ROV and AUV systems for real-time volumetric imaging in a deep sea environment. Defocused excitation of the transducer array is used to achieve a sound field opening angle of up to 40° in lateral and elevational direction. The antenna's sound field can be adjusted electronically in order to increase either the imaged area or the image contrast in a specific area of interest. Different filter algorithms working on a raw data basis have been implemented in order to suppress image artifacts which occur during the reconstruction process. Measurements on different phantoms have been performed in order to prove the real-time imaging as well as spatial resolution capabilities of the camera system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.