The present paper is concerned with developing tensor iterative Krylov subspace methods to solve large multi-linear tensor equations. We use the T-product for two tensors to define tensor tubal global Arnoldi and tensor tubal global Golub-Kahan bidiagonalization algorithms. Furthermore, we illustrate how tensor-based global approaches can be exploited to solve ill-posed problems arising from recovering blurry multichannel (color) images and videos, using the so-called Tikhonov regularization technique, to provide computable approximate regularized solutions. We also review a generalized cross-validation and discrepancy principle type of criterion for the selection of the regularization parameter in the Tikhonov regularization. Applications to image sequence processing are given to demonstrate the efficiency of the algorithms.
This paper presents an efficient algorithm to solve total variation (TV) regularizations of images contaminated by a both blur and noise. The unconstrained structure of the problem suggests that one can solve a constrained optimization problem by transforming the original unconstrained minimization problem to an equivalent constrained minimization one. An augmented Lagrangian method is developed to handle the constraints when the model is given with matrix variables, and an alternating direction method (ADM) is used to iteratively find solutions. The solutions of some sub-problems are belonging to subspaces generated by application of successive orthogonal projections onto a class of generalized matrix Krylov subspaces of increasing dimension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.