BackgroundThe coronavirus disease 2019 (COVID-19) epidemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), began in Wuhan city, Hubei province, in December, 2019, and has spread throughout China. Understanding the evolving epidemiology and transmission dynamics of the outbreak beyond Hubei would provide timely information to guide intervention policy. MethodsWe collected individual information from official public sources on laboratory-confirmed cases reported outside Hubei in mainland China for the period of Jan 19 to Feb 17, 2020. We used the date of the fourth revision of the case definition (Jan 27) to divide the epidemic into two time periods (Dec 24 to Jan 27, and Jan 28 to Feb 17) as the date of symptom onset. We estimated trends in the demographic characteristics of cases and key time-to-event intervals. We used a Bayesian approach to estimate the dynamics of the net reproduction number (R t ) at the provincial level. FindingsWe collected data on 8579 cases from 30 provinces. The median age of cases was 44 years (33-56), with an increasing proportion of cases in younger age groups and in elderly people (ie, aged >64 years) as the epidemic progressed. The mean time from symptom onset to hospital admission decreased from 4•4 days (95% CI 0•0-14•0) for the period of Dec 24 to Jan 27, to 2•6 days (0•0-9•0) for the period of Jan 28 to Feb 17. The mean incubation period for the entire period was estimated at 5•2 days (1•8-12•4) and the mean serial interval at 5•1 days (1•3-11•6). The epidemic dynamics in provinces outside Hubei were highly variable but consistently included a mixture of case importations and local transmission. We estimated that the epidemic was self-sustained for less than 3 weeks, with mean Rt reaching peaks between 1•08 (95% CI 0•74-1•54) in Shenzhen city of Guangdong province and 1•71 (1•32-2•17) in Shandong province. In all the locations for which we had sufficient data coverage of Rt, Rt was estimated to be below the epidemic threshold (ie, <1) after Jan 30. Interpretation Our estimates of the incubation period and serial interval were similar, suggesting an early peak of infectiousness, with possible transmission before the onset of symptoms. Our results also indicate that, as the epidemic progressed, infectious individuals were isolated more quickly, thus shortening the window of transmission in the community. Overall, our findings indicate that strict containment measures, movement restrictions, and increased awareness of the population might have contributed to interrupt local transmission of SARS-CoV-2 outside Hubei province.
The Bill and Melinda Gates Foundation supports an ambitious portfolio of novel vaccines, drug regimens, and diagnostic tools for tuberculosis (TB). We elicited the expected efficacies and improvements of the novel interventions in discussions with the foundations managing their development. Using an age-structured mathematical model of TB, we explored the potential benefits of novel interventions under development and those not yet in the portfolio, focusing on the WHO Southeast Asia region. Neonatal vaccination with the portfolio vaccine decreases TB incidence by 39% to 52% by 2050. Drug regimens that shorten treatment duration and are efficacious against drug-resistant strains reduce incidence by 10 -27%. New diagnostics reduce incidence by 13-42%. A triple combination of a portfolio vaccine, drug regimen, and diagnostics reduces incidence by 71%. A short mass vaccination catch-up campaign, not yet in the portfolio, to augment the triple combination, accelerates the decrease, preventing >30% more cases by 2050 than just the triple combination. New vaccines and drug regimens targeted at the vast reservoir of latently infected people, not in the portfolio, would reduce incidence by 37% and 82%, respectively. The combination of preventive latent therapy and a 2-month drug treatment regimen reduces incidence by 94%. Novel technologies in the pipeline would achieve substantial reductions in TB incidence, but not the Stop TB Partnership target for elimination. Elimination will require new delivery strategies, such as mass vaccination campaigns, and new products targeted at latently infected people. latent infection ͉ novel interventions ͉ transmission model ͉ latent therapy T he Bill and Melinda Gates Foundation (BMGF) supports an ambitious portfolio of novel vaccines, treatment regimens, and diagnostic tools for tuberculosis (TB). Funded by BMFG and other sources, the Aeras Global TB Vaccine Foundation oversees vaccine development (1), the TB Alliance seeks novel drug regimens (2), and the Foundation for Innovative New Diagnostics (FIND) looks for new diagnostic tools (3). The current cornerstone of TB intervention is directly observed short-course therapy (DOTS), lasting generally 6 months and prone to dropout (4). DOTS is currently implemented in the 184 countries where 99% of all estimated TB cases occurred and 93% of the world population lived in 2006 (5). Cases are passively ascertained. Sputum smear light microscopy has been the mainstay of TB diagnosis for more than a century, but has important limitations (3). Delays between the patient visit to the clinic and diagnosis often lead to delays in treatment. Neonatal vaccination with bacillus Calmette-Guérin (BCG) vaccine is part of the expanded program of immunization in many countries, but its efficacy against pulmonary TB is poor (1). Despite these efforts, in large parts of Asia, Africa, Eastern Europe, and Latin America, incidence remains 2 orders of magnitude (5) above the Stop TB Partnership goal to eliminate TB as a public health problem, defined as Ͻ1 ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.