A variety of physico-chemical methods employ chemical denaturants to unfold proteins, and study different biophysical processes involved therein. Chemical denaturants are believed to induce unfolding by stabilizing the unfolded state of proteins over the folded state, either macroscopically or through specific interactions. In order to characterize the nature of specific interactions between proteins and denaturants, we have solved crystal structures of hen egg-white lysozyme complexed with denaturants, and report here dimethyl sulfoxide and guanidinium chloride complexes. The dimethyl sulfoxide molecules and guanidinium ions were seen to bind the protein at specific sites and were involved in characteristic interactions. They share a major binding site between them, the C site in the sugar binding cleft of the enzyme. Although the overall conformations of the complexes were very similar to the native structure, spectacular conformational changes were seen to occur locally. Temperature factors were also seen to drop dramatically in the local regions close to the denaturant binding sites. An interesting observation of the present study was the generation of a sodium ion binding site in hen egg-white lysozyme in the presence of denaturants, which was hitherto unknown in any of the other lysozyme structures solved so far. Loss of some of the crucial side chain-main chain interactions may form the initial events in lysozyme unfolding.
Comparative molecular field analysis and comparative molecular similarity indices analysis were performed on 114 analogues of 1,2-diarylimidazole to optimize their cyclooxygenase-2 (COX-2) selective antiinflammatory activities. These studies produced models with high correlation coefficients and good predictive abilities. Docking studies were also carried out wherein these analogues were docked into the active sites of both COX-1 and COX-2 to analyze the receptor ligand interactions that confer selectivity for COX-2. The most active molecule in the series (53) adopts an orientation similar to that of SC-558 (4-[5-(4-bromophenyl)-3-trifluoromethyl-1H-1-pyrozolyl]-1-benzenesulfonamide) inside the COX-2 active site while the least active molecule (101) optimizes in a different orientation. In the active site, there are some strong hydrogen-bonding interactions observed between residues His90, Arg513, and Phe518 and the ligands. Additionally, a correlation of the quantitative structure-activity relationship data and the docking results is found to validate each other and suggests the importance of the binding step in overall drug action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.