In this paper we explore a new model focused on integrating two classifiers; Convolutional Neural Network (CNN) and Support Vector Machine (SVM) for offline Arabic handwriting recognition (OAHR) on which the dropout technique was applied. The suggested system altered the trainable classifier of the CNN by the SVM classifier. A convolutional network is beneficial for extracting features information and SVM functions as a recognizer. It was found that this model both automatically extracts features from the raw images and performs classification. Additionally, we protected our model against over-fitting due to the powerful performance of dropout. In this work, the recognition on the handwritten Arabic characters was evaluated; the training and test sets were taken from the HACDB and IFN/ENIT databases. Simulation results proved that the new design based-SVM of the CNN classifier architecture with dropout performs significantly more efficiently than CNN based-SVM model without dropout and the standard CNN classifier. The performance of our model is compared with character recognition accuracies gained from state-of-the-art Arabic Optical Character Recognition, producing favorable results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.