Rats exposed to protein restriction as fetuses develop hypertension as adults. Hypertension increases the risk of myocardial ischaemia and infarction. We investigated whether rats exposed to low-protein diets in utero are more susceptible to myocardial ischaemia -reperfusion (IR) injury. Pregnant Wistar rats were fed control or low-protein (MLP) diets throughout pregnancy. At 4 and 8 weeks postnatal age systolic blood pressure was determined in the offspring using tail-cuff plethysmography. At 6 months of age, rats were treated with saline or N-acetylcysteine (NAC) for 48 h. Rapidly excised hearts were retro-perfused (Langendorff) to assess isolated cardiac function before (baseline), during 30 min ischaemia (no coronary perfusion) and for 60 min after reinstating coronary perfusion (reperfusion). Hearts were then harvested and treated appropriately for analysis of infarct size. Exposure to the MLP diet in utero significantly increased systolic blood pressure at 4 and 8 weeks of age (6-13 mmHg increase; P,0·001) and significantly impaired recovery of left ventricular developed pressure after ischaemia at 6 months of age in male offspring only (P,0·003). Pre-treatment with NAC prevented this impairment of recovery in MLP male offspring and improved recovery in all females. Myocardial infarct size was not different between dietary groups after IR, but NAC pre-treatment significantly reduced the degree of infarction (P, 0·001). In conclusion, an MLP diet throughout gestation significantly impairs recovery of the 6-month-old adult rat heart to IRinduced injury in a sex-specific manner. Undernutrition during development may increase susceptibility to CHD by impairing recovery from coronary events.
The present study examined the extent to which the late gestation rise in fetal plasma cortisol influenced adipose tissue development in the fetus. The effect of cortisol on the abundance of adipose tissue mitochondrial proteins on both the inner (i.e. uncoupling protein (UCP)1) and outer (i.e. voltage-dependent anion channel (VDAC)) mitochondrial membrane, together with the long and short forms of the prolactin receptor (PRLR) protein and leptin mRNA was determined. Perirenal adipose tissue was sampled from ovine fetuses to which (i) cortisol (2-3 mg/ day for 5 days) or saline was infused up to 127-130 days of gestation, and (ii) adrenalectomised and intact controls at between 142 and 145 days of gestation (term=148 days). UCP1 protein abundance was significantly lower in adrenalectomised fetuses compared with age-matched controls, and UCP1 was increased by cortisol infusion and with gestational age. Adrenalectomy reduced the concentration of the long form of PRLR, although this effect was only significant for the highest molecular weight isoform. In contrast, neither the short form of PRLR, VDAC protein abundance or leptin mRNA expression was significantly affected by gestational age or cortisol status. Fetal plasma triiodothyronine concentrations were increased by cortisol and with gestational age, an affect abolished by adrenalectomy. When all treatment groups were combined, both plasma cortisol and triiodothyronine concentrations were positively correlated with UCP1 protein abundance. In conclusion, an intact adrenal is necessary for the late gestation rise in UCP1 protein abundance but cortisol does not appear to have a major stimulatory role in promoting leptin expression in fetal adipose tissue. It remains to be established whether effects on UCP1 protein are directly regulated by cortisol alone or mediated by other anabolic fetal hormones such as triiodothyronine.
Modelling maternal obesity in rats adversely affected steroid synthesis, uterine contractile associated protein expression and ex-vivo uterine contractility during labour. This maternal obesity model can be utilized further to unravel the mechanisms causing uterine dystocia in obese women.
The Western diet is typically high in salt and fructose, which have pressor activity. Maternal diet can affect offspring blood pressure, but the extent to which maternal intake of excess salt and fructose may influence cardiovascular function of the offspring is unknown. We sought to determine the effect of moderate maternal dietary intake of salt and/or fructose on resting and stimulated cardiovascular function of the adult male and female offspring. Pregnant rats were fed purified diets (±4 % salt) and water (±10 % fructose) before and during gestation and through lactation. Male and female offspring were weaned onto standard laboratory chow. From 9 to 14 weeks of age, cardiovascular parameters (basal, circadian and stimulated) were assessed continuously by radiotelemetry. Maternal salt intake rendered opposite-sex siblings with a 25-mmHg difference in blood pressure as adults; male offspring were hypertensive (15 mmHg mean arterial pressure (MAP)) and female offspring were hypotensive (10 mmHg MAP) above and below controls, respectively. Sex differences were unrelated to endothelial nitric oxide activity in vivo, but isolation-induced anxiety revealed a significantly steeper coupling between blood pressure and heart rate in salt-exposed male offspring but not in female offspring. MAP of all offspring was refractory to salt loading but sensitive to subsequent dietary fructose, an effect exacerbated in female offspring from fructose-fed dams. Circadian analyses of pressure in all offspring revealed higher mean set-point for heart rate and relative non-dipping of nocturnal pressure. In conclusion, increased salt and fructose in the maternal diet has lasting effects on offspring cardiovascular function that is sex-dependent and related to the offspring's stress-response axis.Key words: Rats: Hypertension: Fructose: Salt: Maternal nutrition: Stress Ancestral man is predicted to have eaten a diet high in fibre, K, complex carbohydrates and protein and low in Na, refined sugars and energy density. Typically, a palaeolithic diet provided a plant-to-animal energy ratio of 1:1, with the net acid-load being alkaline (1,2) . Analyses of the diets of modern hunter-gatherer populations support these predictions (2,3) . Since this time, when physiological and metabolic systems were evolving, there has been a gradual transition away from this palaeolithic diet. With the emergence of agriculture (about 7-5000 years ago) through to the industrial revolution (about last 100 years), the 'modern diet' has rapidly become low in fibre and high in Na, simple sugars and energy density (4) . When superimposed on the palaeolithic genotype and physiology, the modern diet has resulted in an increased incidence of non-communicable diseases (NCD), which is estimated to account for 60 % of all deaths worldwide (5) . The economic impact of NCD is vast: $558, $237 and $33 billion in China, India and the UK, respectively (6) , whereas $750 billion is spent annually in the USA for diabetes and hypertension alone (7) . Modification of di...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.