In an attempt to find new compounds with neuroprotective activity, we have designed, synthesized and characterized 19 new nNOS inhibitors with a 4,5-dihydro-1H-pyrazole structure. Compounds 11r [1-cyclopropanecarbonyl-3-(2-amino-5-chlorophenyl)-4,5-dihydro-1H-pyrazole] and 11e [1-cyclopropanecarbonyl-3-(2-amino-5-methoxyphenyl)- 4,5-dihydro-1H-pyrazole] show the highest activities with inhibition percentages of 70% and 62%, respectively. A structure-activity relationship for the nNOS inhibition can be established from the structural comparison of these new pyrazole derivatives and the described synthetic kynurenines 10.
To find new compounds with potential neuroprotective activity, we have designed, synthesized, and characterized a series of neural nitric oxide synthase (nNOS) inhibitors with a kynurenamine structure. Among them, N-[3-(2-amino-5-methoxyphenyl)-3-oxopropyl]acetamide is the main melatonin metabolite in the brain and shows the highest activity in the series, with an inhibition percentage of 65% at a 1 mM concentration. The structure-activity relationship of the new series partially reflects that of the previously reported 2-acylamido-4-(2-amino-5-methoxyphenyl)-4-oxobutyric acids, endowed with a kynurenine-like structure. Structural comparisons between these new kinurenamine derivatives, kynurenines, and 1-acyl-3-(2-amino-5-methoxyphenyl)-4,5-dihydro-1H-pyrazole derivatives also reported confirm our previous model for the nNOS inhibition.
Antitumor agents that bind to tubulin and disrupt microtubule dynamics have attracted considerable attention in the last few years. To extend our knowledge of the thiazole ring as a suitable mimic for the cis-olefin present in combretastatin A-4, we fixed the 3,4,5-trimethoxyphenyl at the C4-position of the thiazole core. We found that the substituents at the C2- and C5-positions had a profound effect on antiproliferative activity. Comparing compounds with the same substituents at the C5-position of the thiazole ring, the moiety at the C2-position influenced antiproliferative activities, with the order of potency being NHCH3> Me ≫ N(CH3)2. The N-methylamino substituent significantly improved antiproliferative activity on MCF-7 cells with respect to C2-amino counterparts. Increasing steric bulk at the C2-position from N-methylamino to N,N-dimethylamino caused a 1–2 log decrease in activity. The 2-N-methylamino thiazole derivatives 3b, 3d and 3e were the most active compounds as antiproliferative agents, with IC50 values from low micromolar to single digit nanomolar, and, in addition, they are also active on multidrug-resistant cell lines over-expressing P-glycoprotein. Antiproliferative activity was probably caused by the compounds binding to the colchicines site of tubulin polymerization and disrupting microtubule dynamics. Moreover, the most active compound 3e induced apoptosis through the activation of caspase-2, -3 and -8, but 3e did not cause mitochondrial depolarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.