A priori knowledge on large-scale sub-surface conductivity structure is required in many applications investigating electrical properties of the lithosphere. A map on crustal conductivity for the Fennoscandian Shield and its surrounding oceans, sea basins and continental areas is presented. The map is based on a new database on crustal conductance, i.e. depth integrated conductivity, where all available information on the conductivity of the bedrock, sedimentary cover and seawater are compiled together for the first time for the Fennoscandian Shield. The final model consists of eight separate layers to allow a 3D description of conductivity structures. The first three layers, viz. water, sediments and the first bedrock layer, describe the combined conductance of the uppermost 10 km. The other five bedrock layers contain the data of the crustal conductance from the depth of 10 km to the depth of 60 km. The database covers an area from 0• E to 50• E and 50• N to 85• N. Water conductances are estimated from bathymetric data by converting depths to conductances and taking into account the salinity variations in the Baltic Sea. Conductance of the sedimentary cover includes estimates on the conductance of both marine and continental sediments. Bedrock conductances are extrapolated from 1D-and 2D-models. Extrapolations are based on data from magnetometer array studies, airborne electromagnetic surveys and other electromagnetic investigations as well as on other geophysical and geological data. The crustal conductivity structure appears to be very heterogeneous. Upper crust, in particular, has a very complex structure reflecting a complex geological history. Lower crust seems to be slightly more homogeneous although large regional contrasts are found in both the Archaean and Palaeoproterozoic areas.
Recent developments in the speed and quality of data acquisition using the radiomagnetotelluric (RMT) method, whereby large amounts of broadband RMT data can be collected along profiles, have prompted us to develop a strategy for routine inverse modeling using 2D models. We build a rather complicated numerical model containing both 2D and 3D elements believed to be representative for shallow conductors in crystalline basement overlain by a thin sedimentary cover. We then invert the corresponding synthetic data on selected profiles, using both traditional MT approaches, as well as the proposed approach, which is based on the determinant of the MT impedance tensor. We compare the estimated resistivity models with the true models along the selected profiles and find that the traditional approaches often lead to strongly biased models and bad data fit, in contrast to those using the determinant. In this case, much of the bias is removed and the data fit is improved. The determinant of the impedance tensor is independent of the chosen strike direction, and once the a priori model is set, the best fitting model is found to be practically independent of the starting model used. We conclude that the determinant of the impedance tensor is a useful tool for routine inverse modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.