The development of useful structure-function relationships for materials that exhibit correlated nanoscale disorder requires adequately large atomistic models which today are obtained mainly via theoretical simulations. Here, we exploit our recent advances in structure-refinement methodology to demonstrate how such models can be derived directly from simultaneous fitting of 3D diffuse- and total-scattering data, and we use this approach to elucidate the complex nanoscale atomic correlations in the classical relaxor ferroelectric PbMg 1/3 Nb 2/3 O 3 (PMN). Our results uncover details of ordering of Mg and Nb and reveal a hierarchical structure of polar nanoregions associated with the Pb and Nb displacements. The magnitudes of these displacements and their alignment vary smoothly across the nanoregion boundaries. No spatial correlations were found between the chemical ordering and the polar nanoregions. This work highlights a broadly applicable nanoscale structure-refinement method and provides insights into the structure of PMN that require rethinking its existing contentious models.
Abstract. This paper presents a first statistical validation of tropospheric ozone products derived from measurements of the IASI satellite instrument. Since the end of 2006, IASI (Infrared Atmospheric Sounding Interferometer) aboard the polar orbiter Metop-A measures infrared spectra of the Earth's atmosphere in nadir geometry. This validation covers the northern mid-latitudes and the period from July 2007 to August 2008. Retrieval results from four different sources are presented: three are from scientific products (LATMOS, LISA, LPMAA) and the fourth one is the pre-operational product distributed by EUMETSAT (version Correspondence to: M. Eremenko (maxim.eremenko@lisa.univ-paris12.fr) 4.2). The different products are derived from different algorithms with different approaches. The difference and their implications for the retrieved products are discussed. In order to evaluate the quality and the performance of each product, comparisons with the vertical ozone concentration profiles measured by balloon sondes are performed and lead to estimates of the systematic and random errors in the IASI ozone products (profiles and partial columns). A first comparison is performed on the given profiles; a second comparison takes into account the altitude dependent sensitivity of the retrievals. Tropospheric columnar amounts are compared to the sonde for a lower tropospheric column (surface to about 6 km) and a "total" tropospheric column (surface to about 11 km). On average both tropospheric columns have small biases for the scientific products, less than 2 DobsonPublished by Copernicus Publications on behalf of the European Geosciences Union. C. Keim et al.: IASI tropospheric ozone validationUnits (DU) for the lower troposphere and less than 1 DU for the total troposphere. The comparison of the still preoperational EUMETSAT columns shows higher mean differences of about 5 DU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.