Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas–particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.
Terrestrial ecosystems are simultaneously the largest source and a major sink of volatile organic compounds (VOCs) to the global atmosphere, and these two-way fluxes are an important source of uncertainty in current models. Here, we apply high-resolution mass spectrometry (proton transfer reaction-quadrupole interface time-of-flight; PTR-QiTOF) to measure ecosystem–atmosphere VOC fluxes across the entire detected mass range (m/z 0–335) over a mixed temperate forest and use the results to test how well a state-of-science chemical transport model (GEOS-Chem CTM) is able to represent the observed reactive carbon exchange. We show that ambient humidity fluctuations can give rise to spurious VOC fluxes with PTR-based techniques and present a method to screen for such effects. After doing so, 377 of the 636 detected ions exhibited detectable gross fluxes during the study, implying a large number of species with active ecosystem–atmosphere exchange. We introduce the reactivity flux as a measure of how Earth–atmosphere fluxes influence ambient OH reactivity and show that the upward total VOC (∑VOC) carbon and reactivity fluxes are carried by a far smaller number of species than the downward fluxes. The model underpredicts the ∑VOC carbon and reactivity fluxes by 40–60% on average. However, the observed net fluxes are dominated (90% on a carbon basis, 95% on a reactivity basis) by known VOCs explicitly included in the CTM. As a result, the largest CTM uncertainties in simulating VOC carbon and reactivity exchange for this environment are associated with known rather than unrepresented species. This conclusion pertains to the set of species detectable by PTR-TOF techniques, which likely represents the majority in terms of carbon mass and OH reactivity, but not necessarily in terms of aerosol formation potential. In the case of oxygenated VOCs, the model severely underpredicts the gross fluxes and the net exchange. Here, unrepresented VOCs play a larger role, accounting for ∼30% of the carbon flux and ∼50% of the reactivity flux. The resulting CTM biases, however, are still smaller than those that arise from uncertainties for known and represented compounds.
Abstract.A method using thermal desorption sampling and analysis by proton transfer reaction mass spectrometry (PTR-MS) to measure long chain alkanes (C 12 -C 18 ) and other larger organics associated with diesel engine exhaust emissions is described. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula C n H 2n+1 . The PTR-MS is insensitive to nalkanes less than C 8 but displays an increasing sensitivity for larger alkanes. Fragment ion distribution and sensitivity is a function of drift conditions. At 80 Td the most abundant ion fragments from C 10 to C 16 n-alkanes were m/z 57, 71 and 85. The mass spectrum of gasoline and diesel fuel at 80 Td displayed ion group patterns that can be related to known fuel constituents, such as alkanes, alkylbenzenes and cycloalkanes, and other compound groups that are inferred from molecular weight distributions such as dihydronapthalenes and naphthenic monoaromatics. It is shown that thermal desorption sampling of gasoline and diesel engine exhausts at 80 Td allows for discrimination against volatile organic compounds, allowing for quantification of long chain alkanes from the abundance of C n H 2n+1 fragment ions. The total abundance of long chain alkanes in diesel engine exhaust was measured to be similar to the total abundance of C 1 -C 4 alkylbenzene compounds. The abundance patterns of compounds determined by thermal desorption sampling may allow for emission profiles to be developed to better quantify the relative contributions of diesel and gasoline exhaust emissions on organic compounds concentrations in urban air.
Abstract. Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20-55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, noctane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from −24 % to −2 %. The difference between theoretical ECN and measured ECN ranged from −22 % to 9 %. Measured ECN values were within 10 % of theoretical ECN values for most terpenoid compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.