Abstract-A digital voltage-controlled oscillator (VCO) is described which uses frequency multiplication and division to achieve very wide bandwidth. The VCO uses current-mode logic and does not require reactive elements such as inductors, capacitors or varactors. A novel, fully symmetric exclusive-OR (XOR) circuit was developed which uses product pairs and emitter-coupled logic. To achieve the highest performance possible, the critical path is symmetric and special physical design techniques were developed to promote matched-capacitance. The maximum measured frequency was 13.66 GHz. The chip occupies 1.9 mm 2 1.6 mm and dissipates 2.45 W at a supply voltage of 06.0 V. With a measured frequency range from 1.25 to 13.66 GHz, this circuit has the widest bandwidth reported in the literature for any VCO, digital or analog.
Integrated-circuit interconnect characterization is growing in importance as devices become faster and smaller. Along with this trend, interconnect geometry is becoming more complex, consisting of an increasing number of wiring levels. Accurate numerical extraction of three-dimensional (3-D) interconnect capacitance is essential for achieving design targets in the multigigahertz digital regime. Interconnectcapacitance extraction is complicated by the presence of inhomogeneous layers with differing dielectric constant. Dielectric anisotropy as well is common in many low-polymeric dielectrics used in high-performance IC's. A CAD procedure using the novel floating random-walk extractor QuickCAP is presented. Our procedure is efficient enough to extract a substantial amount of a chip's 3-D wiring. We include as well dielectric anisotropy and inhomogeneity. The procedure is not based on effective conductor geometry or on a finite-sized conductor library but rather on the entire 3-D layout, accounting for actual local variations in conductor separations and shapes. We then apply our procedure to an experimental circuit vehicle implemented in AlGaAs/GaAs heterojunction bipolar transistor current-mode logic. This vehicle is used to validate the accuracy of our CAD procedure in predicting circuit speed. Measured and predicted test-capacitor values and ring-oscillator propagation times agreed generally to within 2-4%. To verify results on a larger digital circuit, we analyzed all interconnects in an adder carry-chain oscillator using our procedure. Predicted propagation delays were generally within 3% of measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.