Abstract:Module temperature is an important parameter of photovoltaic energy systems since their performance is affected by its variation. Several cooling controllers require a precise estimation of module temperature to reduce excessive heating and power losses. In this work, an adaptive neuro fuzzy inference system technique is developed for temperature estimation of photovoltaic systems. For the learning process, experimental measurements comprising six environmental variables (temperature, irradiance, wind velocity, wind direction, relative humidity, and atmospheric pressure) and one operational variable (photovoltaic power output) were used as training parameters. The proposed predictive model comprises a zero-order Sugeno neuro fuzzy system with two generalized bell-shaped membership functions per input and 128 fuzzy rules. The model is validated with experimental information from an instrumented photovoltaic system with a fitness correlation parameter of R = 95%. The obtained results indicate that the proposed methodology provides a reliable tool for estimation of modules temperature based on environmental variables. The developed algorithm can be implemented as part of a cooling control system of photovoltaic modules to reduce the efficiency losses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.