Based on petrographic, mineralogical, isotope, and facies assemblage analysis, a microbial origin is established for the formation of dolomite associated with gypsum in Miocene evaporite lake deposits of the Madrid Basin, central Spain. In these deposits, dolomite is present as both intercalated carbonate beds, locally showing domal stromatolite structures between packages of selenite Christmas tree-like gypsum, and patches replacing macrocrystalline gypsum. Texture of the dolomite is characterized by crystal aggregates showing a variety of crystal sizes and morphologies, e.g., platelets, rhombs, micro-rods, and rings, whilst larger crystals are commonly spherical and/or wheat-grain shaped. Organic remains, in the form of filaments, shrubs, micro-fibrils, and strands, are also common and contain significant amounts of carbon. These textural features are also recognized in dolomite replacing gypsum, where Fe oxide and sulfide as well as celestite are ubiquitous mixed with the dolomite groundmass. The dolomite, whether primary or replacing gypsum, is poorly ordered and slightly Ca-rich, thus non stoichiometric. Stable-isotope compositions are characterized by negative values for both oxygen and carbon. Dolomite beds featuring domal stromatolites have d 18 O values ranging from 22.99% and 23.79% and d 13 C values ranging from 24.67% and 27.35%, whilst d 13 C values determined in the dolomite replacive of gypsum shows a small range of variation between 25.70% and 26.96%. By contrast, d 18 O values of replacive dolomite oscillate in a wider range (from 23.04% to 27.99%). Formation of the dolomite was associated mainly with microbial mats, having taken place in relatively diluted lake water. Further evaporative concentration resulted in precipitation of gypsum crystals sealing the mats and creating endoevaporitic microenvironments in which endolithic cyanobaterial activity produced extensive boring and corrosion of the gypsum crystals. Hiatuses in gypsum growth caused an intensification of the corrosion process and favored the precipitation of dolomite mediated by microbes, resulting in pervasive replacement of the sulfate.
This paper provides strong evidence for the contribution of the phylum Firmicutes in mediating the primary precipitation of Mg-rich carbonates (hydromagnesite, dolomite, magnesite, and nesquehonite) in recent microbialites from a highly alkaline and ephemeral inland lake (Las Eras, Central Spain). The carbonate mineral precipitation occurs sequentially as the microbial mats decay. Scanning electron microscopy (SEM) provided solid proof that hydromagnesite nucleation is initiated on the exopolymeric substances (EPS) and the microbial cells associated to the microbial mat degradation areas. The progressive mineralization of the EPS and bacterial cells by hydromagnesite plate-like crystals on their surface, results in the entombment of the bacteria and formation of radiating aggregates of hydromagnesite crystals. The hydrous phases, mostly hydromagnesite, were produced at a high percentage in the first stages of the microbial degradation of organic matter. When the availability of organic substrates declines, the heterotrophs tend to reduce their number and metabolic activity, remain dormant. At this stage, the anhydrous phases, dolomite and magnesite, nucleate on bacterial nanoglobules and/or collapsed cells. Evidence for the sequential formation of the Mg-rich carbonates trough the decay of organic matter by a fermentative EPS-forming bacterium isolated from the microbialites, Desemzia incerta, is drawn through a comparative analysis of carbonate formation in both natural and experimental settings. This study will help to constrain potential mechanisms of carbonate formation in natural systems, which are of fundamental importance not only for understanding modern environments but also as a window into the geologic past of Earth and potentially Mars.
This research provides an ancient analogue for biologically mediated dolomite precipitation in microbial mats and biofilms, and describes the involvement of highly structured extracellular polymeric secretion (EPS) templates in dolomite nucleation. The structure of EPS is shown to match the hexagonaltrigonal lattice geometry of dolomite, which favoured the epitaxial crystallization of dolomite on the organic substrate. This structure of EPS also matches the arrangement of silica nanospheres in opal, which further accounts for the organically-templated formation of opal enabling the nonreplacive co-existence of dolomite and silica. The study is focused on a 50 m thick dolomite succession that is exposed in central areas of the Tertiary Duero Basin and was deposited in a mudflat-saline lake sedimentary complex during the Middle to Late Miocene (9 to 15 Ma). In the intermediate intervals of the succession, poorly indurated dolomite beds pass gradually into silica beds. On the basis of sedimentological, compositional, geochemical and petrographic data, silica and dolomite beds have been interpreted as mineralized microbial mats. The silica beds formed in marginal areas of the lake in response to intense evaporative concentrations; this resulted in the rapid and early precipitation of opal. Silicification accounted for the exceptional preservation of the microbial mat structure, including biofilms, filamentous and coccoid microbes, and EPS. Extracellular polymeric secretions have a layered structure, each layer being composed of fibres which are arranged in accordance with a reticular pattern, with frequent intersection angles at 120°a nd 60°. Therefore, the structure of EPS matches the lattice geometry of dolomite and the arrangement of silica nanospheres in opal. Additionally, EPS binds different elements, with preference to Si and Mg. The concurrence of suitable composition and surface lattice morphologies in the EPS favoured the crystallization of dolomite on the substrate. In some cases, dolomite nucleation took place epicellularly on coccoid micro-organisms, which gave way to spheroid crystals. Organic surfaces enable the inorganic mineral precipitation by lowering the free energy barrier to nucleation. Most of the microbial mats probably developed on the lake floor, under sub-aqueous conditions, where the decomposition of organic matter took place. The subsequent formation of openly packed dolomite crystals, with inter-related Si-enriched fibrils throughout, is evidence for the pre-existence of fibrillar structures in the mats. Miocene dolomite crystals are poorly ordered and non-stoichiometric, Sedimentology (2008) 55, 729-750 729 with a slight Ca-excess (up to 5%), which is indicative of the low diagenetic potential the microbial dolomite has towards a more ordered and stoichiometric structure; this confirms that microbial imprints can be preserved in the geological record, and validates their use as biosignatures.
This research work is centred on continental lacustrine gypsum deposits of Miocene age cropping out in the easternmost part of the Madrid Basin. These gypsum deposits, accumulated in a continental saline lake, are characterized by a spectacular, distinctive Christmas-tree morphology and a peculiar dolomite replacement. A combination of microscopic (petrography and scanning electron microscopy) and analytical techniques (fluid inclusion microthermometry, X-ray energy dispersive spectroscopy and X-ray diffractometry) was used in order to study the crystallographic distribution and the composition of the fluid inclusions within the gypsum. The objectives were to characterize the continental brine from which the mineral precipitated, and to detect mineral and element traces that could indicate early diagenetic processes altering the gypsum deposits. Data from primary fluid inclusions indicated that gypsum precipitated from an aqueous fluid (lake water) of low to moderate total salinity (between 20 and 90 g/L NaCl). Secondary fluid inclusions represent interstitial lake brine in contact with gypsum, slightly enriched in total salt content as crystal formation proceeded. Textural, ultrastructural and microanalytical analysis indicate that the presence of dolomite precipitates inside the gypsum layers is related to the microbial colonization of the gypsum deposits and the biomineralization of the cell walls and extracellular polymeric substances around the cells. Our investigation emphasizes necessity of a multidisciplinary approach to assess geobiological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.