The influence of plasma oxidation and other surface pretreatments on the electronic structure of indium–tin–oxide (ITO) thin films has been studied by high resolution x-ray photoemission spectroscopy. Plasma oxidation compensates n-type doping in the near surface region and leads to a reduction in the energy of plasmon satellite structure observed in In 3d core level spectra. In parallel, the Fermi level moves down within the conduction band, leading to a shift to low binding energy for both core and valence band photoemission features; and the work function increases by a value that corresponds roughly to the core and valence band binding energy shifts. These observations suggest that the conduction band of ITO is fixed relative to the vacuum level and that changes of work function are dominated by shifts of the Fermi level within the conduction band.
A new, highly luminescent terbium complex (see Figure) is investigated here as a material for organic light‐emitting diodes (OLEDs). It is demonstrated that device efficiencies of over 2.6 lm/W are possible—the highest yet reported for a lanthanide‐based OLED. This indicates that lanthanide‐based materials are a viable alternative to Alq‐ and PPV‐based polymers for use in commercial OLED displays.
Divalent molecular lanthanide complexes are shown to offer promise as tunable light emitting materials in thin film electroluminescent displays for the first time in this study. Bright orange luminescence is obtained from thin film EL device structures containing bis[tris(dimethylpyrazolyl)borate]europium(II) (1), which has a high quantum efficiency in the solid state. The effect of device structure upon device efficiency and light purity is discussed and an optimum EL device structure for 1 detailed.
The excitation energy transfer rates between the excited states of a Tb(III) complex containing the ligand 1-phenyl-3-methyl-4-(trimethylacetyl)pyrazol-4-one, are described. Energy transfer rate constants are derived from time-gated and time-correlated single photon counting measurements. Comparison with the analogous Gd(III) complex shows that there is efficient intramolecular energy transfer from a singlet state of the ligand to excited terbium f-electron states. There is no evidence of bi-exciton annihilation in these materials, even at very high exciton densities. The use of this complex as the active medium for electroluminescent device applications is addressed. We note the particular properties of the ligand which make it suitable for this application and suggest possible improvements.
A scalable manufacturing process for fabricating active-matrix backplanes on low-cost flexible substrates, a key enabler for electronic-paper displays, is presented. This process is based on solution processing, ink-jet printing, and laser patterning. A multilayer architecture is employed to enable high aperture ratio and array performance. These backplanes were combined with E Ink electrophoretic media to create high-performance displays that have high contrast, are bistable, and can be flexed repeatedly to a radius of curvature of 5 mm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.