The main finding of our study is the discriminability of nodal-positive from nodal-negative CC using ADC histogram analysis in 3T DWI. This information is crucial for the gynecological surgeon to identify the optimal treatment strategy for patients suffering from CC. Furthermore, ADCentropy was identified as a potential imaging biomarker for tumor heterogeneity and might be able to indicate further molecular changes like loss of p53 expression, which is associated with EMT and consequentially indicates a poor prognosis in CC. Finally, our study confirmed the findings of previous works, which indicated that histogram analysis of ADC maps can distinguish between low-grade and high-grade CC. In conclusion, it can be stated that ADC histogram analysis provides additional, prognostically important information on tumor biology in CC.
The purpose of this study was to analyze associations between apparent diffusion coefficient (ADC) and standardized uptake values (SUV) values and different histopathological parameters in uterine cervical cancer. 21 patients with primary uterine cervical cancer were involved into the study. All patients underwent a whole body simultaneous18F-FDG PET/MRI. Mean and maximum SUV were noted (SUVmean and SUVmax). In all tumors minimal, mean, and maximal ADC values (ADCmin, ADCmean, and ADCmax) were estimated. Combined parameters were calculated: SUVmax/SUVmean, ADCmin/ ADCmean, SUVmax/ADCmin and SUVmax/ADCmean. In all cases the diagnosis was confirmed histopathologically by tumor biopsy. Histological slices were stained by hematoxilin and eosin, MIB 1 monoclonal antibody, and p16. All histopathological images were digitalized and analyzed by using a ImageJ software 1.48v. The following parameters were estimated: cell count, proliferation index KI 67, total and average nucleic areas, epithelial and stromal areas. Spearman's correlation coefficient was used to analyze associations between ADC and SUV values and histological parameters. P values ≤ 0.05 were considered as statistically significant. ADCmin and ADCmin/ ADCmean were statistically significant lower in N positive tumors. KI 67 correlated statistically significant with SUVmax (r = 0.59, p = 0.005), SUVmean (0.45, p = 0.04), ADCmin (r = −0.48, p = 0.03), SUVmax/ADCmin (r = 0.71, p = 0.001), SUVmax/ADCmean (0.75, p = 0.001). SUVmax correlated well with epithelial area (r = 0.71, p = 0.001) and stromal areas (r = −0.71, p = 0.001). SUV values, ADCmin, SUVmax/ADCmin and SUVmax/ADCmean correlated statistically significant with KI 67 and can be used to estimate the proliferation potential of tumors. SUV values correlated strong with epithelial area of tumor reflected metabolic active areas.
Our study demonstrates the overall benefits using DWI in 3T MRI resulting in a higher reader confidence, sensitivity of tissue infiltration, and tumor-grading for cervical cancer.
Background
Prenatal risk stratification of women with previous cesarean section (CS) by ultrasound thickness measurement of the lower uterine segment (LUS) is challenging. There is a wide range of proposed cutoff values and a valuable algorithm for selection before birth is not available. Using 3 T magnetic resonance imaging (MRI), we aimed to identify possible shortcomings of the current protocols used for birth selection after CS. Therefore, we evaluated anatomic and morphologic differences of the LUS and its thickness in patients with CS and those without. Possible impact factors on LUS thickness were studied.
Methods
We retrospectively analyzed 3 T MRI scans of 164 pregnant women in their second or third trimester, with (patient group,
n
= 60) and without previous CS (control group,
n
= 104). Sagittal T2-weighted images were studied. Normal findings of the LUS in MRI, reliability of MRI measurements, as well as factors influencing LUS thickness were assessed. MRI findings were compared to intraoperative findings.
Results
MRI provided good intra- (ICC 0.872) and fair inter-rater reliability (ICC 0.643). The relationship of the LUS and the cesarean scar to the surrounding anatomical structures and also its morphology varied strongly in patients and controls. Scar identification was possible in only 9/60 (15.0%) patients. The LUS was thinner in patients (1.9 ± 0.7 mm) than in controls (2.7 ± 1.3 mm). An LUS thinning up to 1 mm was observed in 23% of women without a previous CS and in 34% of women with normal intraoperative findings. Suspicion of a uterine dehiscence (LUS thickness < 1 mm) was only found in the patient group (5/59 (8.5%)) and was intraoperatively confirmed. In controls, LUS thickness was influenced by fetal weight, gestational age and amniotic fluid amounts.
Conclusion
Variability in anatomy, thickness and morphology seem to limit common prenatal LUS imaging diagnostics. Therefore, we consider that diagnostic protocols must be re-evaluated and imaging should be adjusted to the individual patient conditions. Due to its independency of ultrasound limitations, an additional MRI might be useful for altered anatomy and impaired ultrasound conditions. An LUS thinning up to 1 mm might be a normal finding and should be further investigated as reference value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.