Local rates of heat transfer on the endwall, suction, and pressure surfaces of a large scale turbine blade cascade were measured for two inlet boundary layer thicknesses and for a Reynolds number typical of gas turbine engine operation. The accuracy and spatial resolution of the measurements were sufficient to reveal local variations of heat transfer associated with distinct flow regimes and with regions of strong three-dimensional flow. Pertinent results of surface flow visualization and pressure measurements are included. The dominant role of the passage vortex, which develops from the singular separation of the inlet boundary layer, in determining heat transfer at the endwall and at certain regions of the airfoil surface is illustrated. Heat transfer on the passage surfaces is discussed and measurements at airfoil midspan are compared with current finite difference prediction methods.
An experimental research program was conducted to determine the influence of free-stream turbulence on zero pressure gradient, fully turbulent boundary layer flow. In Part I of this paper, convective heat transfer coefficients, boundary layer mean velocity and temperature profile data, as well as wall skin friction coefficient distribution data were presented for five flow conditions of constant free-stream velocity (30 m/s) and free-stream turbulence intensities ranging from approximately 1/4 to 7 percent. These data indicated that the turbulence had significant effects on both the turbulent boundary layer skin friction and heat transfer. In the current paper, these new data are compared to various independent experimental data and analytical correlations of free-stream turbulence effects. This analysis has shown that the effects documented in Part I were a function of the freestream turbulence intensity, the turbulence length scale, and the boundary layer momentum thickness Reynolds number. In addition, the Reynolds analogy factor (2St/cf) was shown to increase by just over 1 percent for each 1 percent increase in free-stream turbulence level. New correlations for the influence of free-stream turbulence on skin friction, heat transfer, and the Reynolds analogy factor are presented.
An experimental research program was conducted to determine the influence of free-stream turbulence on zero pressure gradient, fully turbulent boundary layer flow. Connective heat transfer coefficients and boundary layer mean velocity and temperature profile data were obtained for a constant free-stream velocity of 30 m/s and free-stream turbulence intensities ranging from approximately 1/4 to 7 percent. Free-stream multicomponent turbulence intensity, longitudinal integral scale, and spectral distributions were obtained for the full range of turbulence levels. The test results with 1/4 percent free-stream turbulence indicate that these data were in excellent agreement with classic two-dimensional, low free-stream turbulence, turbulent boundary layer correlations. For fully turbulent boundary layer flow, both the skin friction and heat transfer were found to be substantially increased (up to ∼ 20 percent) for the higher levels of free-stream turbulence. Detailed results of the experimental study are presented in the present paper (Part I). A comprehensive analysis is provided in a companion paper (Part II).
Experiments were conducted to determine the film cooling effectiveness and con vective heat transfer coeffici�nt distributions on the endwall of a large-scale turbine vane passage. The vane test models employed simulated the passage geometry and upstream cooling slot geometry of a typical first-stage turbine.The test models were constructed of low thermal conductivity foam and foil heaters.The tests were conducted at a typical engine Reynolds number but at lower than typical Mach numbers. The film cooling effectiveness distribution for the entire endwall and the heat transfer distribution for the downstream one-half of the end wall were characterized by large gapwise variations which were attributed to a secondary flow vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.