Behavioral observations are important in detecting illness, injury, and reproductive status as well as performance of normal behaviors. However, conducting live observations in extensive systems, such as pasture-based dairies, can be difficult and time consuming. Activity monitors, such as those created for use with automatic milking systems (AMS), have been developed to automatically and remotely collect individual behavioral data. Each cow wears a collar transponder for identification by the AMS, which can collect data on individual activity and rumination. The first aim of this study was to examine whether cow activity levels as reported by the AMS activity monitor (ACT) are accurate compared with live observations and previously validated pedometers [IceQube (IQ), IceRobotics, Edinburgh, UK]. The second aim of the study was to determine if the AMS rumination monitors (RUM) provide an accurate account of time spent ruminating compared with live observations. Fifteen lactating Holstein cows with pasture access were fitted with ACT, RUM, and IQ. Continuous focal observations (0600-2000 h) generated data on lying and active behaviors (standing and walking), as well as rumination. Activity recorded by live observation and IQ included walking and standing, whereas IQ steps measured cow movement (i.e., acceleration). Active behaviors were analyzed separately and in combination to ascertain exactly what behavioral components contributed to calculation of ACT "activity." Pearson correlations (rp) were computed between variables related to ACT, RUM, IQ, and live observations of behavior. A linear model was used to assess significance differences in the correlation coefficients of the 4 most relevant groups of variables. Significant but moderate correlations were found between ACT and observations of walking (r(p)=0.61), standing (r(p)=0.46), lying (r(p)=-0.57), and activity (r(p)=0.52), and between ACT and IQ steps (r(p)=0.75) and activity (r(p)=0.58) as well as between RUM and observations of rumination (rp=0.65). These data indicate that ACT and RUM do reflect cow walking and rumination, respectively, but not with a high degree of accuracy, and lying cannot be distinguished from standing.
Raising beef cattle on concrete floors can negatively impact their welfare by increasing joint swelling and body lesions, as well as abnormalities in resting behavior and postural changes. We hypothesized that the addition of rubber mats to concrete pens would improve beef cattle welfare by improving performance, health, hygiene, and resting behavior. Forty-eight crossbred Angus steers were housed in pens of 4 and randomly assigned to a single flooring treatment: (1) fully slatted concrete (CON), (2) fully slatted rubber mat (SLAT), or (3) solid rubber mat (SOLID; 60% of pen floor) from 36 to 48 wk of age. Weight, ADG, lesions, gait score, joint swelling, and animal and pen cleanliness were collected every 2 wk. Behavioral time budgets and frequency of postural changes (an indicator of floor traction and comfort) were collected at 0, 6, and 12 wk. No differences in weight gain or ADG were observed. Steers on SOLID flooring (0.80 ± 0.08) showed increased lesions compared to SLAT (0.38 ± 0.08) and CON (0.37 ± 0.08; both, = 0.05); however, there was no difference between SLAT and CON. SLAT steers (1.69 ± 0.04) showed a reduced gait score compared to SOLID (1.95 ± 0.04) and CON (1.98 ± 0.04; both, < 0.05), but SOLID and CON did not differ. Steers on SLAT flooring had less joint swelling (both knees and hocks) compared to SOLID and CON (all comparisons, < 0.05), but SOLID and CON did not differ. Steers on SOLID (3.64 ± 0.05) flooring were dirtier than those on SLAT (2.27 ± 0.05) and CON (2.19 ± 0.05; both, < 0.001), whereas SLAT and CON were similar. Additionally, SOLID and SLAT pens were less clean than CON pens ( < 0.001 and = 0.094, respectively), and SOLID was less clean than SLAT ( < 0.001). Time budget behavior was affected by treatment ( = 0.043), where SOLID differed from CON and SLAT (both, < 0.05). Steers on SOLID flooring preferred to rest on the rubber mat vs. slatted concrete ( = 0.001). Steers on SLAT flooring changed their posture more frequently than those on SOLID and CON flooring (both, < 0.05), but SOLID and CON did not differ. Compared to CON steers, SOLID steers showed an increase in lesions and a reduction in cleanliness, whereas SLAT steers showed a decrease in gait score and joint swelling and an increase in postural changes. Combined, these data suggest that the addition of slatted rubber mats to concrete pens may improve beef cattle welfare.
The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Undesirable fluctuations in metabolites and impaired immune defense mechanisms near parturition can severely affect cow health and have residual effects on performance and longevity. Metabolic and oxidative stress profiles of multiparous and primiparous dairy cows in traditional parlor and feeding systems are well characterized, but status of these profiles in alternative management systems, such as grazing cows managed with an automatic milking system (AMS), are poorly characterized. Therefore, the objective of this case study was to characterize the metabolic and oxidant status of pastured cows milked with an AMS. It was hypothesized that primiparous and multiparous cows milked with an AMS would experience changes in oxidative and metabolic status after parturition; however, these changes would not impair cow health or production. Blood was collected from 14 multiparous and 8 primiparous Friesian-cross dairy cows at 1, 7, 14, and 21 d relative to calving for concentrations of insulin, glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate, reduced glutathione, oxidized glutathione, and antioxidant potential. Milk production and milking frequency data were collected postpartum. Milk production differed on d 7 and 14 between primiparous and multiparous cows and frequency was not affected by parity. Primiparous cows had higher levels of glucose than multiparous cows. No differences in insulin, NEFA, or β-hydroxybutyrate concentrations were noted between multiparous and primiparous cows postpartum, though days relative to calving significantly affected insulin and NEFA. Primiparous cows also had higher antioxidant potential than multiparous cows during the postpartum period. Results from this study show that, although responses were within expected ranges, periparturient multiparous cows responded differently than periparturient primiparous cows with respect to metabolic and oxidative measures during the postpartum period at this pastured-AMS dairy, suggesting different management strategies may need to be considered with primiparous and multiparous cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.