We present the first high-resolution, soft X-ray spectrum of the prototypical Seyfert 2 galaxy, NGC 1068. This spectrum was obtained with the XMM-Newton Reflection Grating Spectrometer (RGS). Emission lines from H-like and He-like low-Z ions (from C to Si) and Fe L-shell ions dominate the spectrum. Strong, narrow radiative recombination continua (RRCs) for several ions are also present, implying that most of the observed soft X-ray emission arises in low-temperature plasma (kT e $ a few eV). This plasma is photoionized by the inferred nuclear continuum (obscured along our line of sight), as expected in the unified model of active galactic nuclei (AGNs). We find excess emission (compared to pure recombination) in all resonance lines (1s!np) up to the photoelectric edge, demonstrating the importance of photoexcitation as well. We introduce a simple model of a cone of plasma irradiated by the nuclear continuum; the line emission we observe along our line of sight perpendicular to the cone is produced through recombination/radiative cascade following photoionization and radiative decay following photoexcitation. A remarkably good fit is obtained to the H-like and He-like ionic line series, with inferred radial ionic column densities consistent with recent observations of warm absorbers in Seyfert 1 galaxies. Previous Chandra imaging revealed a large (extending out to $500 pc) ionization cone containing most of the X-ray flux, implying that the warm absorber in NGC 1068 is a large-scale outflow. To explain the ionic column densities, a broad, flat distribution in the logarithm of the ionization parameter ( ¼ L X =n e r 2 ) is necessary, spanning log ¼ 0-3. This suggests either radially stratified ionization zones, the existence of a broad density distribution (spanning a few orders of magnitude) at each radius, or some combination of both.
We present a systematic study of the role of indirect processes in the soft X-ray line formation of iron L-shell ions, using a newly developed, relativistic, multiconfigurational atomic package. These indirect processes involve the neighboring charge states of the target ion, namely, radiative recombination, dielectronic recombination, and resonance excitation. For Fe xvii, the inner-shell collisional ionization (CI) is also relevant. Lines originating from 3s and 3p upper levels of Fe xvii-xx are found to be significantly affected by these processes, with some lines being enhanced by nearly a factor of 2 at the temperature of maximum fractional abundance in CI equilibrium. Such enhancement, although not enough to completely explain the observed line ratios from various astrophysical sources, is a vast improvement over the previous models neglecting these processes. Rate coefficients for individual processes are tabulated, which can be conveniently included in spectral models to correctly account for these effects. As a by-product of this investigation, the total recombination and ionization rates of all Fe L-shell ions are tabulated as a function of temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.