A new and computationally viable full quantum version of line shape theory is obtained in terms of a mixed Weyl symbol calculus. The basic ingredient in the collision-broadened line shape theory is the time dependent dipole autocorrelation function of the radiator-perturber system. The observed spectral intensity is the Fourier transform of this correlation function. A modified form of the Wigner-Weyl isomorphism between quantum operators and phase space functions (Weyl symbols) is introduced in order to describe the quantum structure of this system. This modification uses a partial Wigner transform in which the radiator-perturber relative motion degrees of freedom are transformed into a phase space dependence, while operators associated with the internal molecular degrees of freedom are kept in their original Hilbert space form. The result of this partial Wigner transform is called a mixed Weyl symbol. The star product, Moyal bracket and asymptotic expansions native to the mixed Weyl symbol calculus are determined. The correlation function is represented as the phase space integral of the product of two mixed symbols: one corresponding to the initial configuration of the system, the other being its time evolving dynamical value. There are, in this approach, two semiclassical expansionsone associated with the perturber scattering process, the other with the mixed symbol star product. These approximations are used in combination to obtain representations of the autocorrelation that are sufficiently simple to allow numerical calculation. The leading O(h 0 ) approximation recovers the standard classical path approximation for line shapes. The higher order O(h 1 ) corrections arise from the noncommutative nature of the star product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.