Abstract. On August 25, 2018 the interplanetary counterpart of the August 20, 2018 Coronal Mass Ejection (CME) hit the Earth, giving rise to a strong G3 geomagnetic storm. We present a description of the whole sequence of events from the Sun to the ground as well as a detailed analysis of the observed effects on the Earth's environment by using a multi instrumental approach. We studied the ICME propagation in the interplanetary space up to the analysis of its effects in the magnetosphere, ionosphere and at ground. To accomplish this task, we used ground and space collected data, including data from CSES (China Seismo Electric Satellite), launched on February 11, 2018. We found a direct connection between the ICME impact point onto the magnetopause and the pattern of the Earth's polar electrojects. Using the Tsyganenko TS04 model prevision, we were able to correctly identify the principal magnetospheric current system activating during the different phases of the geomagnetic storm. Moreover, we analyzed the space-weather effects associated with the August 25, 2018 solar event in terms of evaluation geomagnetically induced currents (GIC) and identification of possible GPS loss of lock. We found that, despite the strong geomagnetic storm, no loss of lock has been detected. On the contrary, the GIC hazard was found to be potentially more dangerous than other past, more powerful solar events, such as the St. Patrick geomagnetic storm, especially at latitudes higher than 60° in the European sector.
A full-halo coronal mass ejection left the sun on June 21, 2015 from the active region NOAA 12371 encountering Earth on June 22, 2015, generating a G3 strong geomagnetic storm. The CME was associated with an M2 class flare observed at 01:42 UT, located near the center disk (N12E16). Using satellite data from solar, heliospheric, magnetospheric missions and ground-based instruments, we performed a comprehensive Sun-to-Earth analysis. In particular, we analyzed the active region evolution using ground-based and satellite instruments (BBSO, IRIS, HINODE, SDO/AIA, RHESSI --Halpha, EUV, UV, X), the AR magnetograms, using data from SDO HMI, the relative particle data, using PAMELA instruments and the effects of interplanetary perturbation on cosmic ray intensity. We also evaluated the
We have analyzed a highly monochromatic (f = 1.67 mHz) and large‐amplitude Ultra Low Frequency (ULF) wave event observed at satellites and ground observatories on 23 June 2020 during super solar quiet geomagnetic conditions. The train wave was detected between 6:22 and 7:55 UT across a wide longitudinal range of ground stations from low to high latitudes. Using Deep Space Climate Observatory and THEMIS‐B spacecraft, which were in the interplanetary medium, we have identified the possible driver of such global ULF wave activity in the impact of a small pressure pulse accompanied by a discontinuity in the magnetic field. The prolonged duration (90 min) of the ULF waves as well as their latitude‐independent frequency and the small azimuthal wave number (m ∼ 0−2) can be explained in terms of a global magnetospheric waveguide mode. The amplitude and cross‐phase analysis of the wave activity at ground, together with the polarization pattern, suggest the waveguide mode coupling with field line resonance. Nevertheless, during the same time interval, indirect evidence exists of a rapid reconfiguration of the magnetotail in the form of Pi2 waves in the night‐side region. The analysis of energetic particle flux at ionospheric height (500 km) shows a direct connection between the ULF wave activity and particle precipitation.
This paper presents the project Comprehensive spAce wEather Studies for the ASPIS prototype Realization (CAESAR), which aims to tackle the relevant aspects of Space Weather (SWE) science and develop a prototype of the scientific data centre for Space Weather of the Italian Space Agency (ASI) called ASPIS (ASI SPace Weather InfraStructure). To this end, CAESAR involves the majority of the SWE Italian community, bringing together 10 Italian institutions as partners, and a total of 92 researchers. The CAESAR approach encompasses the whole chain of phenomena from the Sun to Earth up to planetary environments in a multidisciplinary, comprehensive, and unprecedented way. Detailed and integrated studies are being performed on a number of well-observed “target SWE events”, which exhibit noticeable SWE characteristics from several SWE perspectives. CAESAR investigations synergistically exploit a great variety of different products (datasets, codes, models), both long-standing and novel, that will be made available in the ASPIS prototype: this will consist of a relational database (DB), an interface, and a wiki-like documentation structure. The DB will be accessed through both a Web graphical interface and the ASPIS.py module, i.e., a library of functions in Python, which will be available for download and installation. The ASPIS prototype will unify multiple SWE resources through a flexible and adaptable architecture, and will integrate currently available international SWE assets to foster scientific studies and advance forecasting capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.