Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.
The genetic structure of Mycosphaerella fijiensis populations around the world was examined using DNA restriction fragment length polymorphism (RFLP) markers. Allele frequencies at 19 nuclear RFLP loci were estimated in a sample of 136 M. fijiensis isolates from five geographical populations representative of banana‐producing areas (South‐East Asia including the Philippines and Papua New Guinea, Africa, Latin America and Pacific Islands). Within each population, gametic disequilibrium tests between the 19 nuclear RFLP loci were mainly non significant (P > 0.05), indicating that random sexual reproduction occurred in these populations. All M. fijiensis populations had a high level of genotypic and allelic diversity (H, gene diversity: 0.25–0.59). The highest levels of gene diversity were found in the two South‐East Asian populations (H: 0.57 and 0.59). Most of the alleles (> 88%) detected in Africa, Latin America and Pacific Islands populations were also detected in South‐East Asian populations. Furthermore, a high and significant (P < 0.05) level of genetic differentiation was observed among M. fijiensis geographical populations (overall estimate of Fst: 0.32). These results were consistent with the hypothesis that M. fijiensis originated in South‐East Asia and spread recently to other parts of the world. The level of allelic diversity in M. fijiensis populations from regions other than South‐East Asia was drastically reduced, indicating founder effects. The data also suggested rare occurrence of migration of M. fijiensis between continents.
Dispersal processes of fungal plant pathogens can be inferred from analysis of spatial genetic structures resulting from recent range expansion. The relative importance of long-distance dispersal (LDD) events vs. gradual dispersal in shaping population structures depends on the geographical scale considered. The fungus Mycosphaerella fijiensis, pathogenic on banana, is an example of a recent worldwide epidemic. Founder effects in this species were detected at both global and continental scale, suggesting stochastic spread of the disease through LDD events. In this study, we analysed the structure of M. fijiensis populations in two recently (∼1979-1980) colonized areas in Costa Rica and Cameroon. Isolates collected in 10-15 sites distributed along a ∼250- to 300- km-long transect in each country were analysed using 19 microsatellite markers. We detected low-to-moderate genetic differentiation among populations in both countries and isolation by distance in Cameroon. Combined with historical data, these observations suggest continuous range expansion at the scale of banana-production area through gradual dispersal of spores. However, both countries displayed specific additional signatures of colonization: a sharp discontinuity in gene frequencies was observed along the Cameroon transect, while the Costa Rican populations seemed not yet to have reached genetic equilibrium. These differences in the genetic characteristics of M. fijiensis populations in two recently colonized areas are discussed in the light of historical data on disease spread and ecological data on landscape features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.