Sentinel lymph node biopsy for several cancers has shown that metastatic tumour cells are preferentially arrested in the lymph node sinuses. To study the molecular components of this sinusoidal trap, gene profiling of lymph node (sinuses) versus tonsil (no sinuses) was performed. Among other groups of molecules, an intriguing gene signature of scavenger and lectin-like receptors was identified. Nine of the 13 genes were preferentially expressed in sinusoidal cells by immunohistochemistry. Using stabilin-2 and monoclonal antibody 3A5 as exclusive endothelial cell (EC) and macrophage (Mvarphi) markers, respectively, lymph node sinusoidal ECs (stabilin-2+, LYVE-1+, DC-SIGNR+, MARCO+, stabilin-1+, MMR+) and sinusoidal Mvarphi (MMR+, DC-SIGN+, sialoadhesin+, CD163+, stabilin-1+ ) showed distinct, but overlapping expression patterns of the signature molecules by double labelling immunofluorescence. The number of stabilin-1+ sinusoidal Mvarphi, however, varied considerably between samples, indicating turnover/differentiation dynamics in this sinusoidal cell population. In the hepatic sinuses, LYVE-1 and CD36 were strongly up-regulated on both sinusoidal ECs and Mvarphi, while DC-SIGNR and DC-SIGN were strongly down-regulated; in contrast to lymph node sinusoidal ECs, MARCO was confined to Mvarphi (Kupffer cells) in the liver sinuses. As Mvarphi are not present in the wall and lumen of splenic sinuses, splenic sinuses expressed a considerably reduced repertoire of scavenger/lectin receptors lacking sialoadhesin, CD36, CD163, and MARCO; in addition, DC-SIGNR was absent from splenic sinusoidal ECs, while DC-SIGN and thrombomodulin were strongly expressed. Interestingly, most of the signature molecules are known to mediate tumour cell adhesion in addition to their functions as scavenger or pattern recognition receptors. This study establishes a gene and tissue database platform to test the hypothesis that additive expression of the lymph node sinus signature genes in sinusoidal ECs and Mvarphi may contribute to selective tumour cell metastasis in lymph nodes and liver including organ-specific mechanisms, such as intraluminal retention or transmigration, while sparing the spleen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.